[1] Twine NA, Janitz K, Wilkins MR, et al. Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease[J]. PLoS One, 2011, 6: e16266. doi:10.1371/journal.pone.0016266. [2] Braggin JE, Bucks SA, Course MM, et al. Alternative splicing in a presenilin 2 variant associated with Alzheimer disease[J]. Ann Clin Transl Neurol, 2019, 6: 762-777. [3] Chang JL, Hinrich AJ, Roman B, et al. Targeting amyloid-beta precursor protein, APP, splicing with antisense oligonucleotides reduces toxic amyloid-beta production[J]. Mol Ther, 2018, 26: 1539-1551. [4] Eftekharzadeh B, Daigle JG, Kapinos LE, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer's disease[J]. Neuron, 2018, 99: 925-940. [5] Ma C, Chang M, Lv H, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum[J]. Genome Biol, 2018, 19: 68. doi:10.1186/s13059-018-1435-z. [6] Fragkouli A, Koukouraki P, Vlachos IS, et al. Neuronal ELAVL proteins utilize AUF-1 as a co-partner to induce neuron-specific alternative splicing of APP[J]. Sci Rep, 2017, 7: 44507. doi:10.1038/srep44507. [7] Kolisnyk B, Al-Onaizi M, Soreq L, et al. Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer's-like pathology[J]. Cereb Cortex, 2017, 27: 3553-3567. [8] Wang ZH, Liu P, Liu X, et al. Delta-secretase (AEP) mediates tau-splicing imbalance and accelerates cognitive decline in tauopathies[J]. J Exp Med, 2018, 215: 3038-3056. [9] Del-Aguila JL, Benitez BA, Li Z, et al. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers[J]. Mol Neurodegener, 2019, 14: 18. doi:10.1186/s13024-019-0319-3. [10] Cornelison GL, Levy SA, Jenson T, et al. Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila[J]. Aging Cell, 2019, 18: e12847. doi:10.1111/acel.12847. [11] Koren SA, Hamm MJ, Meier SE, et al. Tau drives translational selectivity by interacting with ribosomal proteins[J]. Acta Neuropathol, 2019, 137: 571-583. [12] Maina MB, Bailey LJ, Doherty AJ, et al. The involvement of Abeta42 and tau in nucleolar and protein synthesis machinery dysfunction[J]. Front Cell Neurosci, 2018, 12: 220. doi:10.3389/fncel.2018.00220. [13] Cefaliello C, Penna E, Barbato C, et al. Deregulated local protein synthesis in the brain synaptosomes of a mouse model for Alzheimer's disease[J]. Mol Neurobiol, 2020, 57: 1529-1541. [14] Kobayashi S, Tanaka T, Soeda Y. Local somatodendritic translation and hyperphosphorylation of tau protein triggered by AMPA and NMDA receptor stimulation[J]. EBioMedicine, 2017, 20: 120-136. [15] Renoux AJ, Carducci NM, Ahmady AA. Ahmady, et al. Fragile X mental retardation protein expression in Alzheimer's disease[J]. Front Genet, 2014, 5: 360. doi:10.3389/fgene.2014.00360. [16] Zeng T, Ni H, Yu Y, et al. BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs[J]. J Chem Neuroanat, 2019, 98: 87-96. [17] J. Gu J, Wu F, Xu W, et al. TDP-43 suppresses tau expression via promoting its mRNA instability[J]. Nucleic Acids Res, 2017, 45: 6177-6193. [18] Alkallas R, Fish L, Goodarzi H, et al. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer's disease[J]. Nat Commun, 2017, 8: 909. doi:10.1038/s41467-017-00867-z. [19] Li H, Ren Y, Mao K, et al. FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signal-ing[J]. Biochem Biophys Res Commun, 2018, 498: 234-239. [20] Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61: 507-519. [21] Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. eLife, 2017, 6: e31311. doi:10.7554/eLife.31311. [22] Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24: 1403-1419. [23] Chang M, Lv H, Zhang W, et al. Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain[J]. Open Biol, 2017, 7: 170166. doi:10.1098/rsob.170166. [24] Edens BM, Vissers C, Su J, et al. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J]. Cell Rep, 2019, 28: 845-854. |