[1] 陈国兵. 硫氧还蛋白-1通过抑制内质网应激对脓毒症发挥保护作用的机制研究[D].昆明:昆明理工大学, 2017:1-2. [2] Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis[J]. Biochimica Et Biophysica Acta, 2017, 1863:2574-2583. [3] Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease[J]. Clin Sci (Lond), 2018, 132:2013-2028. [4] Khan S, Imran A, Malik A, et al. Bacterial imbalance and gut pathologies: association and contribution of E. coli in inflammatory bowel disease[J]. Crit Rev Clin Lab Sci, 2019, 56:1-17. [5] Chen G, Li X, Huang M, et al. Thioredoxin-1 increases survival in sepsis by inflammatory response through suppressing endoplasmic reticulum stress[J]. Shock, 2016, 46:67-74. [6] Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis[J]. Crit Care Med, 2017, 45:337-347. [7] 李兰娟. 微生态失调 [M] //李兰娟. 医学微生态学. 北京:人民卫生出版社, 2014:51-53. [8] Marshall JC, Christou NV, Meakins JL. The gastrointe-stinal tract the “undrained abscess” of multiple organ failure[J]. Ann Surg, 1993, 218:111-119. [9] Fox AC, Mcconnell KW, Yoseph BP, et al. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia[J]. Shock, 2012, 38:508-514. [10] Dickson RP, Erbdownward JR, Huffnagle GB. Homeo-stasis and its disruption in the lung microbiome[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309:L1047-1055. [11] Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12:843-850. [12] Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2012, 5:e8578. doi: 10.1371/journal.pone.0008578. [13] Tsay TB, Yang MC, Chen PH, et al. Gut flora enhance bacterial clearance in lung through toll-like receptors 4[J]. J Biomed Sci, 2011,18:68. doi: 10.1186/1423-0127-18-68. [14] Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia[J]. Gut 2016, 65:575-583. [15] Shim R, Wong CHY. Complex interplay of multiple biological systems that contribute to post-stroke infections[J]. Brain Behav Immun, 2018, 70:10-20. [16] Stanley D, Mason LJ, Mackin KE, et al. Translocation and dissemination of commensal bacteria in post-stroke infection[J]. Nat Med, 2016, 2:1277-1284. [17] Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis[J]. Lancet Gastroenterol Hepatol, 2017, 2:135-143. [18] Sales-Campos H, Soares SC, Oliveira CJF. An introduc-tion of the role of probiotics in human infections and autoimmune diseases[J]. Crit Rev Microbiol, 2019, 45:413-432. [19] Knackstedt R, Gatherwright J. The role of thermal injury on intestinal bacterial translocation and the mitigating role of probiotics: a review of animal and human studies[J]. Burns, 2019.doi: 10.1016/j.burns.2019.07.007. [20] Millan B, Laffin M, Madsen K. Fecal microbiota transplantation: beyond clostridium difficile[J]. Curr Infect Dis Rep, 2017, 19:31. doi: 10.1007/s11908-017-0586-5. [21] Wardill HR, Secombe KR, Bryant RV, et al. Adjunctive fecal microbiota transplantation in supportive oncology: Emerging indications and considerations in immunocompromised patients[J]. EBioMedicine, 2019, 44:730-740. [22] Chen T, Zhou Q, Zhang D, et al. Effect of faecal microbiota transplantation for treatment of clostridium difficile infection in patients with inflammatory bowel disease: a systematic review and meta-analysis of cohort studies[J]. J Crohns Colitis, 2018, 12:710-717. [23] Zhang F, Zhang T, Zhu H, et al. Evolution of fecal microbiota transplantation in methodology and ethical issues[J]. Curr Opin Pharmacol, 2019, 49:11-16. |