[1] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843. doi: 10.1016/j.diabres.2019.107843. [2] Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries[J]. Circulation, 2016, 134: 441-450. [3] Horr S, Nissen S. Managing hypertension in type 2 diabetes mellitus[J]. Best Pract Res Clin Endocrinol Metab, 2016, 30: 445-454. [4] Choby B. Diabetes update: prevention and management of diabetes complications[J]. FP Essent, 2017, 456: 36-40. [5] Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review[J]. Mol Med, 2018, 24: 59-90. [6] Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70. doi: 10.26402/jpp.2019.6.01. [7] Zhang Y, Sun X, Icli B, et al. Emerging roles for microRNAs in diabetic microvascular disease: Novel targets for therapy[J]. Endocr Rev, 2017, 38: 145-168. [8] Antoniades C. ‘Dysfunctional' adipose tissue in cardiovascular disease: A reprogrammable target or an innocent bystander?[J]. Cardiovasc Res, 2017, 113: 997-998. [9] Camastra S, Vitali A, Anselmino M, et al. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery[J]. Sci Rep, 2017, 7: 9007-9025. [10] Jung UJ. Choi MS. Obesity and its metabolic complica-tions: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease[J]. Int J Mol Sci, 2014, 15: 6184-6223. [11] Shi X, Wang S, Luan H, et al. Clinopodium chinense attenuates palmitic acid-induced vascular endothelial inflammation and insulin resistance through TLR4-mediated NF-kappa B and MAPK pathways[J]. Am J Chin Med, 2019, 47: 97-117. [12] Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension[J]. Hypertension, 2017, 70: 660-667. [13] Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both?[J]. Curr Diab Rep, 2014, 14: 453-471. [14] Nigro C, Leone A, Raciti GA, et al. Methylglyoxal-glyoxalase 1 balance: the root of vascular damage[J]. Int J Mol Sci, 2017, 18: E188.doi:10.3390/ijms18010188. [15] Manigrasso MB, Juranek J, Ramasamy R, et al. Unlock-ing the biology of RAGE in diabetic microvascular complications[J]. Trends Endocrinol Metab, 2014, 25: 15-22. [16] Koulis C, Watson AM, Gray SP, et al. Linking RAGE and Nox in diabetic micro- and macrovascular complications[J]. Diabetes Metab, 2015, 41: 272-281. [17] Correction to: 2016 ATVB plenary lecture: receptor for advanced glycation endproducts and implications for the pathogenesis and treatment of cardiometabolic disorders: Spotlight on the macrophage[J]. Arterioscler Thromb Vasc Biol, 2017, 37: e66.doi:10.1161/ATV.0000000000000057. [18] Meza CA, La Favor JD, Kim DH, et al. Endothelial dysfunction: Is there a hyperglycemia-induced imbalance of NOX and NOS?[J]. Int J Mol Sci, 2019, 20: 3775.doi:10.3390/ijms20153775. [19] Petrie JR, Guzik TJ, and Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms[J]. Can J Cardiol, 2018, 34: 575-584. [20] Guzik TJ, Cosentino F. Epigenetics and immunometabolism in diabetes and aging[J]. Antioxid Redox Signal, 2018, 29: 257-274. [21] Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus[J]. Scand J Immunol, 2018, 88: e12723. doi: 10.1111/sji.12723. [22] Hyun MH, Lee Y, Choi BG, et al. Roles of achieved levels of low-density lipoprotein cholesterol and high-sensitivity c-reactive protein on cardiovascular outcome in statin therapy[J]. Cardiovasc Ther, 2019, 2019: 1-11. [23] Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy[J]. Cardiovasc Res, 2017, 113: 389-398. [24] Banerjee J, Nema V, Dhas Y, et al. Role of microRNAs in type 2 diabetes and associated vascular complications[J]. Biochimie, 2017, 139: 9-19. [25] Sharma A, Rizky L, Stefanovic N, et al. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction[J]. Cardiovasc Diabetol, 2017, 16: 33-56. |