[1] Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report[J]. Virus Res, 2020, 288:198114. doi: 10.1016/j.virusres.2020.198114. [2] Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine[J]. N Engl J Med, 2020. doi: 10.1056/NEJMoa2026920. [3] Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV[J]. Viruses, 2020, 12:244-260. [4] Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181:281-292. [5] Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV[J]. Science, 2020, 368:630-633. [6] Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181:894-904. [7] Shajahan A, Supekar NT, Gleinich AS, et al. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2[J]. Glycobiology, 2020. doi: 10.1093/glycob/cwaa042. [8] Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report[J]. N Engl J Med, 2020. doi: 10.1056/NEJMoa2022483. [9] Wong SK, Li W, Moore MJ, et al. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2[J]. J Biol Chem, 2004, 279:3197-3201. [10] Du L, Zhao G, Chan CC, et al. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity[J]. Viral Immunol, 2010, 23:211-219. [11] Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection[J]. Nat Commun, 2020, 11:1-6. [12] Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses[J]. Trends Immunol, 2020, 41:355-359. [13] Chen WH, Du L, Chag SM, et al. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate[J]. Hum Vaccines Immunother, 2014, 10:648-658. [14] Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2[J]. Emerg Microbes Infect, 2020, 9:680-686. [15] Du L, Zhao G, Chan CCS, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity[J]. Virology, 2009, 393:144-150. [16] Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020. doi: 10.1038/s41586-020-2599-8. [17] Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike[J]. Science, 2020, 369:330-333. [18] Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity[J]. Cell, 2020, 182:1284-1294. [19] Dai L, Zheng T, Xu K, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS[J]. Cell, 2020, 182:722-733. [20] Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically Ⅲ patients with COVID-19 with convalescent plasma[J]. JAMA, 2020, 323:1582-1589. [21] Pooladanda V, Thatikonda S, Godugu C. The current understanding and potential therapeutic options to combat COVID-19[J]. Life Sci, 2020, 254:117765. doi: 10.1016/j.lfs.2020.117765. [22] Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2[J]. Nature, 2020, 584:443-449. |