[1] Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series[J]. Br Med J, 2020,19:368:m606. doi: 10.1136/bmj.m606. [2] Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis[J]. Prog Cardiovasc Dis, 2020.10. doi: 10.1016/j.pcad.2020.03.001. [3] Channappanavar R, Fett C, Mack M, et al. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection[J]. J Immunol, 2017, 198:4046-4053. [4] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Preven-tion[J]. JAMA, 2020,24. doi: 10.1001/jama.2020.2648. [5] Fan Q, Tao R1, Zhang H, et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration[J]. Circulation, 2019, 139:663-678. [6] Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8:420-422. [7] Bin Jardan YA, Ansari MA, Raish M, et al. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway[J]. Biomed Res Int, 2020:3921796. doi: 10.1155/2020/3921796. [8] Folz RJ, Elkordy MA. Coronavirus pneumonia following autologous bone marrow transplantation for breast cancer[J]. Chest, 1999, 115:901-905. [9] Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. Lancet, 2020, 395:1054-1062. [10] Mahmud-Al-Rafat A, Majumder A, Taufiqur Rahman KM, et al. Decoding the enigma of antiviral crisis: does one target molecule regulate all?[J]. Cytokine, 2019, 115:13-23. [11] Basu R, Poglitsch M, Yogasundaram H, et al. Roles of angiotensin peptides and recombinant human ACE2 in heart failure[J]. J Am Coll Cardiol, 2017, 69:805-819. [12] Rosenthal DG, Parwani P, Murray TO, et al. Long-term corticosteroid-sparing immunosuppression for cardiac sarcoidosis[J]. J Am Heart Assoc, 2019, 8:e010952. doi: 10.1161/JAHA.118.010952. [13] Jensen AV, Egelund GB, Andersen SB, et al. The impact of blood glucose on community-acquired pneumonia: a retrospective cohort study[J]. ERJ Open Res, 2017, 3:00114-2016. doi: 10.1183/23120541.00114-2016. [14] Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease[J]. Nat Immunol, 2015, 16:448-457. [15] Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR, et al. Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant graves orbitopathy: a randomized clinical trial[J]. Am J Ophthalmol, 2018, 195:181-190. [16] Knudsen JG, Gudiksen A, Bertholdt L, et al. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise[J]. PLoS One, 2017, 12:e0189301. doi:10.1371/journal.pone.0189301. [17] Jing H, Gao X, Xu L, et al. H2S promotes a glycometabolism disorder by disturbing the Th1/Th2 balance during LPS-induced inflammation in the skeletal muscles of chickens[J]. Chemosphere, 2019, 222:124-131. [18] Rahman MA, Cumming BM, Addicott KW, et al. Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis[J]. Proc Natl Acad Sci U S A, 2020, 117:6663-6674. [19] Hu D, Linders A, Yamak A, et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1α and LDHA[J]. Circ Res, 2018, 123:1066-1079. [20] Maddaloni E, Buzzetti R. COVID-19 and diabetes melli-tus: unveiling the interaction of two pandemics[J]. Diabetes Metab Res Rev, 2020,31:e33213321. doi: 10.1002/dmrr.3321. [21] Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies[J]. J Biol Regul Homeost Agents, 2020,34. doi: 10.23812/CONTI-E. [22] Toldo S, Mezzaroma E, Van Tassell BW, et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse[J]. Exp Physiol, 2013, 98:734-745. [23] Zhao J, Zhao J, Mangalam AK, et al. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses[J]. Immunity, 2016, 44:1379-1391. [24] Kritas SK, Ronconi G, Caraffa A, et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy[J]. J Biol Regul Homeost Agents, 2020,34. doi: 10.23812/20-Editorial-Kritas. [25] Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395:565-574. [26] Yang CW, Lee YZ, Hsu HY, et al. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity[J]. Sci Rep, 2017, 7:4105. doi: 10.1038/s41598-017-04203-9. [27] Wang W, Ye S, Zhang L, et al. Granulocyte colony-stimulating factor attenuates myocardial remodeling and ventricular arrhythmia susceptibility via the JAK2-STAT3 pathway in a rabbit model of coronary microembolization[J]. BMC Cardiovasc Disord, 2020, 20:85. doi: 10.1186/s12872-020-01385-5. |