[1] Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018, 175: 313-326. [2] Page DB, Postow MA, Callahan MK, et al. Immune modulation in cancer with antibodies[J]. Annu Rev Med, 2014, 65: 185-202. [3] Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies[J]. Cancer Cell, 2018, 33: 581-598. [4] Vonderheide RH. The immune revolution: a case for priming, not checkpoint[J]. Cancer Cell, 2018, 33: 563-569. [5] Vonderheide RH, Domchek SM, Clark AS. Immuno-therapy for breast cancer: What are we missing?[J]. Clin Cancer Res, 2017, 23: 2640-2646. [6] Chen Q, Xu L, Du T, et al. Enhanced expression of PD-L1 on microglia after surgical brain injury exerts self-protection from inflammation and promotes neurological repair[J]. Neurochem Res, 2019, 44: 2470-2481. [7] Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immun-otherapies[J]. Nat Rev Drug Discov, 2019, 18: 197-218. [8] Russell SJ, Barber GN. Oncolytic viruses as antigen-agnostic cancer vaccines[J]. Cancer Cell, 2018, 33: 599-605. [9] Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18: 498-513. [10] Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy[J]. Cell, 2017, 170: 1109-1119. [11] Sun F, Guo ZS, Gregory A, et al. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer[J]. J Immunother Cancer, 2020, 8: e000294. doi: 10.1136/jitc-2019-000294. [12] Vijayakumar G, Palese P, Goff PH. Oncolytic newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma[J]. EBioMedicine, 2019, 49: 96-105. [13] Liu Z, Ravindranathan R, Kalinski P, et al. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy[J]. Nat Commun, 2017, 8: 14754. doi: 10.1038/ncomms14754. [14] Smith HG, Mansfield D, Roulstone V, et al. PD-1 blockade following isolated limb perfusion with vaccinia virus prevents local and distant relapse of soft-tissue sarcoma[J]. Clin Cancer Res, 2019, 25: 3443-3454. [15] Chaurasiya S, Chen NG, Fong Y. Oncolytic viruses and immunity[J]. Curr Opin Immunol, 2018, 51: 83-90. [16] 李冲, 王志平. 溶瘤腺病毒抗肿瘤策略研究进展[J]. 基础医学与临床, 2016, 36: 547-551. [17] Harrington K, Freeman DJ, Kelly B, et al. Optimizing oncolytic virotherapy in cancer treatment[J]. Nat Rev Drug Discov, 2019, 18: 689-706. [18] Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, checkmate-143: the game is not over yet[J]. Oncotarget, 2017, 8: 91779-91794. [19] Kim SS, Harford JB, Moghe M, et al. A tumor-targeting nanomedicine carrying the p53 gene crosses the blood-brain barrier and enhances anti-PD-1 immunotherapy in mouse models of glioblastoma[J]. Int J Cancer, 2019, 145: 2535-2546. [20] Passaro C, Alayo Q, De Laura I, et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy[J]. Clin Cancer Res, 2019, 25: 290-299. [21] Zhou G, Ni D, Yan R, et al. New generation of oncolytic herpesviruses embodying immunotherapeutic genes encoding IL-12 and anti-PD-1 antibody[J]. J Clin Oncol, 2019, 37: e14250.doi:10.1158/1538-7445.AM2019-LB-078. |