Antibiotic Resistance in Superbugs: Research Progress of the Metallo-β-lactamases

Chinese Pharmaceutical Journal ›› 2012, Vol. 47 ›› Issue (5) : 325-330.

PDF(2540 KB)
PDF(2540 KB)
Chinese Pharmaceutical Journal ›› 2012, Vol. 47 ›› Issue (5) : 325-330.

Antibiotic Resistance in Superbugs: Research Progress of the Metallo-β-lactamases

Author information +
History +

Cite this article

Download Citations
Antibiotic Resistance in Superbugs: Research Progress of the Metallo-β-lactamases[J]. Chinese Pharmaceutical Journal, 2012, 47(5): 325-330

References


[1] NIKAIDO H. Multidrug resistance in bacteria [J]. Annu Rev Biochem, 2009, 78(1): 119-146.
[2] KUMARASAMY K K, TOLEMAN M A, WALSH T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study [J]. Lancet Infect Dis, 2010, 10(9): 597-602.
[3] ZHENG M J, MA S T. Advance in the structure-activity relationships of carbapenems [J]. Chin Pharm J(中国药学杂志), 2007, 42(22): 1681-1685.
[4] BUSH K, JACOBY G A. Updated functional classification of beta-lactamases [J]. Antimicrob Agents Chemother, 2010, 54(3): 969-976.
[5] WANG Z, FAST W, VALENTINE A M, et al. Metallo-beta-lactamase: structure and mechanism [J]. Curr Opin Chem Biol, 1999, 3(5): 614-622.
[6] WALSH T R, TOLEMAN M A, POIREL L, et al. Metallo-beta-lactamases: the quiet before the storm? [J]. Clin Microbiol Rev, 2005, 18(2): 306-325.
[7] BEBRONE C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily [J]. Biochem Pharmacol, 2007, 74(12): 1686-1701.
[8] YONG D, TOLEMAN M A, GISKE C G, et al. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India [J]. Antimicrob Agents Chemother, 2009, 53(12): 5046-5054.
[9] DAL PERARO M, VILA A J, CARLONI P, et al. Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases [J]. J Am Chem Soc, 2007, 129(10): 2808-2816.
[10] SHARMA N, HU Z, CROWDER M W, et al. Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions [J]. J Am Chem Soc, 2008, 130(26): 8215-8222.
[11] BREECE R M, HU Z, BENNETT B, et al. Motion of the zinc ions in catalysis by a dizinc metallo-beta-lactamase [J]. J Am Chem Soc, 2009, 131(33): 11642-11643.
[12] CROWDER M W, SPENCER J, VILA A J. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria [J]. Acc Chem Res, 2006, 39(10): 721-728.
[13] WANG Z, FAST W, BENKOVIC S J. Direct observation of an enzyme-bound intermediate in the catalytic cycle of the metallo-β-lactamase from Bacteroides fragilis [J]. J Am Chem Soc, 1998, 120(41): 10788-10789.
[14] GARRITY J D, BENNETT B, CROWDER M W. Direct evidence that the reaction intermediate of metallo-beta-lactamase L1 is metal bound [J]. Biochemistry, 2005, 44(3): 1078-1087.
[15] GAO H Z, YANG Q, YAN X Y, et al. Exploring antibiotic resistant mechanism by microcalorimetry [J]. J Therm Anal Calorim, 2012, 107(1):321-324.
[16] YANG X, FENG L, XU K Z, et al. Exploring antibiotic resistant mechanism by microcalorimetry II: determination of thermokinetic parameters of imipenem hydrolysis with metallo-β-lactamase ImiS [J]. J Therm Anal Calorim, 2011, DOI: 10. 1007/s10973-011-1844-7.
[17] HEINZ U, ADOLPH H W. Metallo-beta-lactamases: two binding sites for one catalytic metal ion? [J]. Cell Mol Life Sci, 2004, 61(22): 2827-2839.
[18] OELSCHLAEGER P, AI N, DUPREZ K T, et al. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? [J]. J Med Chem, 2010, 53(8): 3013-3027.
[19] ZHANG H, HAO Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism [J]. FASEB J, 2011, DOI: 10. 1096/fj. 11-184036.
[20] CHAN P H, SO P K, MA D L, et al. Fluorophore-labeled β-lactamase as a biosensor for β-lactam antibiotics: a study of the biosensing process [J]. J Am Chem Soc, 2008, 130(20): 6351-6361.
[21] ZHANG Y, LI J. Comparative kinetic study of β-lactamase inhibitors tazobactam vs sulbactu [J]. Chin Pharm J(中国药学杂志), 2000, 35(4): 240-243.
[22] CHEN D, HU Y, ZHANG X. Study on the activities of pipercillin/sulbactam in vitro and in vivo [J]. Chin Pharm J(中国药学杂志), 2002, 37(7): 517-521.
[23] KUROSAKI H, YASUZAWA H, YAMAGUCHI Y, et al. Detection of a metallo-beta-lactamase (IMP-1) by fluorescent probes having dansyl and thiol groups [J]. Org Biomol Chem, 2003, 1(1): 17-20.
[24] KUROSAKI H, YAMAGUCHI Y, YASUZAWA H, et al. Probing, inhibition, and crystallographic characterization of metallo-β-lactamase (IMP-1) with fluorescent agents containing dansyl and thiol groups [J]. Chem Med Chem, 2006, 1(9): 969-972.
[25] MOLLARD C, MOALI C, PAPAMICAEL C, et al. Thiomandelic acid, a broad-spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies [J]. J Biol Chem, 2001, 276(48): 45015-45023.
[26] LI NARD B, GARAU G, HORSFALL L, et al. Structural basis for the broad-spectrum inhibition of metallo- -lactamases by thiols [J]. Org Biomol Chem, 2008, 6(13): 2282-2294.
[27] LASSAUX P, HAMEL M, GULEA M, et al. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases [J]. J Med Chem, 2010, 53(13): 4862-4876.
[28] BASSETTI M, GINOCCHIO F, GIACOBBE D R, et al. Development of antibiotics for Gram-negatives: where now [J]. Clin Invest, 2011, 1(2): 211-227.
[29] LIVERMORE D M, MUSHTAQ S, WARNER M. Activity of BAL30376 (monobactam BAL19764+ BAL29880+ clavulanate) versus Gram-negative bacteria with characterized resistance mechanisms [J]. J Antimicrob Chemother, 2010, 65(11): 2382-2395.
[30] BEBRONE C, LASSAUX P, VERCHEVAL L, et al. Current challenges in antimicrobial chemotherapy: focus on beta-lactamase inhibition [J]. Drugs, 2010, 70(6): 651-679.
PDF(2540 KB)

64

Accesses

0

Citation

Detail

Sections
Recommended

/