[1] HE W Z, JIANG Z H, SUO Q L. Application of supercritical fluids technology in drugs delivery system preparation [J]. Chemistry (化学通报), 2003, 66(1): 27-32. [2] OKAMOTO H, DANJO K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation [J]. Adv Drug Deliver Rev, 2008, 60(3): 433-446. [3] PASQUALI I, BETTINI R, GIORDANO F. Supercritical fluid technologies: An innovative approach for manipulating the solid-state of pharmaceuticals [J]. Adv Drug Deliver Rev, 2008, 60(3): 399-410. [4] MISHIMA K. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas [J]. Adv Drug Deliver Rev, 2008, 60(3): 411-432. [5] KRUKONIS V J. Supercritical fluid nucleation of difficlt-to-comminute solids[C]. AichE Annual Meeting, San Francisco, CA. 1984. [6] HU G Q, ZHANG C L, CHEN Q, et al. Micronization of griseofulvin by rapid expansion of supercritical solution containing cosolvent [J]. Chin J Pharm (中国医药工业杂志), 2005, 36(4): 211-213. [7] MOUSSA A B, KSIBI H, TENAUD C, et al. Parametric study on the nozzle geometry to control the supercritical fluid expansion [J]. Int J Therm Sci, 2005, 44(8): 774-786. [8] HIRUNSIT P, HUANG Z, SRINOPHAKUN T, et al. Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model [J]. Powder Technol, 2005, 154(2-3): 83-94. [9] TANDYA A, DEHGHANI F, FOSTER N R. Micronization of cyclosporine using dense gas techniques [J]. J Supercrit Fluids, 2006, 37(3): 272-278. [10] TURK M, UPPER G, HILS P. Formation of composite drug-polymer particles by co-precipitation during the rapid expansion of supercritical fluids [J]. J Supercrit Fluids, 2006, 39(2): 253-263. [11] THAKUR R, GUPTA R B. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process [J]. Int J Pharm, 2006, 308(1-2): 190-199. [12] HUANG Z, SUN G B, CHIEW Y C, et al. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS) [J]. Powder Technol, 2005, 160(2): 127-134. [13] SU C S, TANG M, CHEN Y P. Micronization of nabumetone using the rapid expansion of supercritical solution (RESS) process [J]. J Supercrit Fluids, 2009, 50(1): 69-76. [14] NURAY Y A, EBNEM T A, ONUR D A, et al. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS) [J]. J Supercrit Fluids, 2007, 41(3): 440-451. [15] CHEN X Q, CHEN T S, YU H J, et al. Study on the process of formation of fine α-asarone and ibuprofen particle by rapid expansion of supercritical solution [J]. J Ningxia Univ (Nat Sci Ed) (宁夏大学学报自然科学版), 2001, 22(2): 155-157. [16] ALESSI P, CORTESI A, KIKIC I, et al. Particle production of steroid drugs using supercritical fluid processing [J]. Ind Eng Chem Res, 1996, 35(12): 4718-4726. [17] NIJLEN T V, BRENNAN K, MOOTER G V, et al. Improvement of the dissolution rate of artemisinin by means of supercritical fluids technology and solid dispersions [J]. Int J Pharm, 2003, 254(2): 173-181. [18] BETTINI R, ROSSI A, LAVEZZINI E, et al. Thermal and morphological characterization of micronized acetylsalicylic acid powders prepared by rapid expansion of a supercritical solution [J]. J Therm Anal Calorim, 2003, 73(2): 487-497. [19] PABLO G D, JEAN W T, YEO S D, et al. Application of supercritical fluids for the production of sustained delivery devices [J]. J Controlled Release, 1993, 24(1-3): 27-44. [20] GUNEY O, AKGERMAN A. Synthesis of controlled-release products in supercritical medium [J]. AIChE, 2002, 48(4): 856-866. [21] SHINOZAKI H, OGUCHI T, SUZUKI S, et al. Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansionof supercritical solutions[J]. Drug Dev Ind Pharm, 2006, 32(7): 877-891. [22] MEZIANI M J, PATHAK P, DESAI T, et al. Supercritical fluid processing of nanoparticles from biodegradable and biocompatible polymers [J]. Ind Eng Chem Res, 2006, 45(10): 3420-3424. [23] YOUNG T J, JOHNSTON K P, PACE G W, et al. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution [J]. AAPS Pharm Sci Tech, 2003, 5(1): 1-15. [24] WANG T J, TSUTSUMI A, HASEGAWA H, et al. Mechanism of particle coating granulation with RESS process in a fluided bed [J]. Powder Tech, 2001,118(3): 229-235. [25] SENCAR P, SRCIC S, KNEZ Z, et al. Improvement of nifedipine dissolution characteristics using supercritical CO2 [J]. Int J Pharm, 1997, 148(2): 123-130. [26] KERC J, SRCIC S, KNEZ Z, et al. Micronization of drugs using supercritical carbon dioxide [J]. Int J Pharm, 1999,182(1): 33-39. [27] ANA R C D, CHRISTELLE R, ARLETTE V G, et al. Preparation of acetazolamide composite microparticles by supercriticalanti-solvent techniques [J]. Int J Pharm, 2007, 332(1-2): 132-139. [28] GALLAGHER P M, COFFEY M P, KRUKONIS V J, et al. Gas antisolvent recrystalllization: new process to recrystallize compounds insoluble in supercritical fluids [C]. HOSHSTON K P, PENNINGER J M L (eds. ). Supercritical fluid science and technology. Washington DC: ACS Symposium Series, no. 406, 1989: 334-354. [29] BAKHBAKHI Y, CHARPENTIER P A, ROHANI S. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery [J]. Int J Pharm, 2006, 309(1-2): 71-80. [30] MOCHIZUKE S, TERAMOTO A, YAMASHITA F, et al. Size-controlled recrystallization of fullerene by gas-antisolvent process [J]. J Mater Sci, 2010, 45(6): 1588-1594. [31] YEO S D, KIN M S, LEE J C. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process [J]. J Supercrit Fluid, 2003, 25(2): 143-154. [32] MONEGHINI M, KIKIC I, VOINOVICH D, et al. Study of solid state of carbamazepine after processing with gas anti-solvent technique [J]. Eur J Pharm Biopharm, 2003, 56(2):281-289. [33] YEO S D, LIM G B, DEBENEDETTI P G. Formation of microparticulate protein powder using supercritical fluid antisolvent [J]. Biotec Bioeng, 1993, 41(3): 341-346. [34] CHEN K X, ZHANG X Y, PAN J, et al. Recrystallization of andrographolide using the supercritical fluid antisolvent process [J]. J Cryst Growth, 2005, 274(1-2): 226-232. [35] YORK P, HANNA M. Particles engineering by supercritical technologies for powder inhalation drug delivery. Proceeding of Respiratory Drug Delivery V, Pheonis[C]: Buffalo Grove: Interpharm Preess, 1996: 231-239. [36] REHMAN M, SHEKUNOV B Y, YORK P, et al. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide [J]. J Pharm Sci, 2001, 90(10): 1570-1582. [37] RODIER E, LOCHARD H, SAUCEAU M, et al. A three step supercritical process to improve the dissolution rate of Eflucimibe [J]. Eur J Pharm Sci, 2005, 26(2): 184-193. [38] PYO D G, LIM C, CHO D, et al. Size prediction of recombinant human growth hormonenanoparticles produced by supercritical fluid precipitation [J]. Anal Bioanal Chem, 2007, 387(3): 901-907. [39] BOUCHARD A, JOVANOVIC N, HOFLAND G W, et al. Ways of manipulating the polymorphism of glycine during supercritical fluid crystallization [J]. J Supercit Fluid, 2008, 44(3): 422-432. [40] LI Y, YANG D J, CHEN S L, et al. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods [J]. Pharm Res, 2008, 25(3): 563-577. [41] SACHA G A, SCHMITT W J, NAIL S L. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid [J]. Pharm Dev Technol, 2006, 11(2): 187-194. [42] KIM Y H, SIOUTAS C, FINE P, et al. Effect of albumin on physical characteristics of drug particles produced by supercritical fluid technology [J]. Powder Technol, 2008, 182(3): 354-363. [43] KUNASTITCHAI S, PICHERT L, SARISUTA N, et al. Application of aerosol solvent extraction system (ASES) process for preparation of liposomes in a dry and reconstitutable form [J]. Int J Pharm, 2006, 316 (1-2): 93-101. [44] MORIBE K, FUKINO M, TOZUKA Y, et al. Prednisolone multicomponent nanoparticles preparation by aerosol solvent extracton system [J]. Int J Pharm, 2009, 380 (1-2): 201-205. [45] REVERCHON E, MARCO I D, PORTA G D. Rifampicin microparticles production by supercritical antisolvent precipitation [J]. Int J Pharm, 2002, 243(1-2): 83-91. [46] WANG Y L, DAVE R N, PFEFFER R. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process [J]. J Supercrit Fluids, 2004, 28(1): 85-99. [47] CHATTOPADHAY P, GUPTA R B. Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer [J]. Ind Eng Chem Res,2001, 40(16): 3530-3539. [48] PATHAK P, MEZIANI M J, DESAI T, et al. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing [J]. J Supercrit Fluids,2006, 37(3): 279-286. [49] GONG K, VIBOONKIAT R, REHMAN I U, et al. Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing [J]. J Pharm Sci,2005, 94(12): 2583-2590. [50] HAO J Y, WHITAKER M J, SERHATKULU G, et al. Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent-free route to microparticles [J]. J Mater Chem, 2005, 15(11): 1148-1153. [51] LIU H, FINN N, YATES M Z. Encapsulation and sustained release of a model drug indomethacin, using CO2-based microencapsulation [J]. Langmuir, 2005, 21(1): 379-385. [52] REVERCHON E, PPRTA G D. Terbutaline microparticles suitable for aerosol delivery produced by supercritical assisted atomization [J]. Int J Pharm, 2003, 258(1-2): 1-9. [53] REVERCHON E, ANTONACCI A. Chitosan microparticles production by supercritical fluid processing [J]. Ind Eng Chem Res, 2006, 45(16): 5722-5728. [54] ELVIRA C, FANOVICH A, FERNANDEZ M, et al. Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-CO2 impregnation and by dissolution-evaporation techniques [J]. J Controlled Release, 2004, 99(2): 231-240. [55] KHALED H, MICHAEL T, WAHL M A. Drug loading into-cyclodextrin granules using a supercritical fluid process for improved drug dissolution [J]. Eur J Pharm Sci, 2008, 33(3): 306-312. [56] THIERING R, DEHGHANI F, FOSTER N R. Current issues relating to anti-solvent micronisation techniques and their extension to industrial scales [J]. J Supercrit Fluids, 2001, 21 (2): 159-177.