目的 制备白花丹醌(plumbagin,PLB)透明质酸-癸烯基丁二酸酐(HA-DSA)新型纳米胶束,并对其质量及体外释药规律进行研究。方法 首先合成载药材料HA-DSA,再以粒径为指标,用Box-Behnken响应面优化PLB-HA-DSA处方工艺,采用透析法评价PLB-HA-DSA的体外释放并拟合最优方程。结果 PLB-HA-DSA 最佳处方工艺为:有机相-水相(1∶20),药物与材料比为1∶11; PLB-HA-DSA 呈球状分布,粒径为 (110.71±2.03) nm,Zeta电位为(-42.12±2.34) mV,包封率为(92.12±0.06)%,载药量为 (5.13±1.06)%;体外释放实验中,PLB-HA-DSA 累积释放度较原料药明显减慢。结论 本研究成功制备得到PLB-HA-DSA纳米胶束,可减缓PLB的体外释放,具有一定的缓释作用。
Abstract
OBJECTIVE To prepare a new type of hyaluronic acid-decenylsuccinic anhydride (HA-DSA) nanomicelles loaded with plumbagin (PLB),and to study their quality and in vitro drug release. METHODS Firstly,the drug-loaded material HA-DSA was synthesized, and then the formulation process of PLB-HA-DSA was optimized by Box-Behnken response surface and the in vitro release of PLB-HA-DSA was evaluated by dialysis method and the optimal equation was fitted. RESULTS The optimal formulation process of PLB-HA-DSA was as follows: organic phase-aqueous phase(1∶20),drug:material ratio(1∶11). PLB-HA-DSA was spherical with a particle size of (110.71±2.03) nm, a Zeta potential of (-42.12±2.34) mV,an encapsulation efficiency of (92.12±0.06)%, and a drug load of (5.68±0.06)%. In the in vitro release experiment,the cumulative release degree of PLB-HA-DSA was significantly lower than that of the API. CONCLUSION PLB-HA-DSA nanomicelles are successfully prepared, which could retard the release of PLB in vitro and have a certain sustained release effect.
关键词
白花丹醌 /
透明质酸-癸烯基丁二酸酐胶束 /
Box-Behnken响应面优化 /
体外释放 /
纳米胶束
{{custom_keyword}} /
Key words
plumbagin /
HA-DSA micelle /
Box Behnken response surface optimization /
in vitro release /
nanomicelle
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YIN Z, ZHANG J, CHEN L, et al. Research progress on the anticancer effect and mechanism of action of plum bagasse glycoside[J]. Biomed Res Int, 2020, 2020:6940953.
[2] LIU C M, HUANG X C, DU B. Experimental study on the mechanism of Plumbagin regulating ROS inhibition of NLRP3 inflammasome to alleviate IgA renal injury[J]. Chin J Clin Anato, 2020, 38(3):308-313.
[3] HAN X, BI X, GUO T, et al. Nanoparticle co delivery of Plumbagin and Dihydrotanshinone can reverse immunosuppressive TME in liver cancer[J]. Controlled Public J, 2022, 348:250-263.
[4] QAIS F A, KHAN M S, AHMAD I, et al. The virulence and biofilm of Plumbagin inhibiting quorum sensing regulation in Gram negative bacteria: in vitro and computer studies[J]. Biofouling, 2021, 37(7):724-739.
[5] YANG F, HOU Q, LI N, et al. Plumbagin inhibits colon cancer cell proliferation and promotes apoptosis through the CXCL8/PI3K/AKT glycolytic pathway[J]. Mod Oncol Med, 2023, 31 (3): 411-416.
[6] SON T G, CAMANDOLA S, ARUMUGAM T V, et al. Plumbagin, a novel Nrf 2/ARE activator, protects against cerebral ischemia[J]. J Neurochem, 2010, 112(5):1316-1326.
[7] RAVINDRA K C,SELVI B R,ARIF M,et al. Inhibition of lysine acetyltransferaseKAT 3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin[J]. Biol Chem,2009,284(36):24453-24464.
[8] LAI L, LIU J, ZHAI D, et al. Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2[J]. Br J Pharmacol, 2012, 165(4):1084-1096.
[9] WU B H, YANG H Y, SUN J, et al. Research progress on hyaluronic acid modified anti-tumor drugs[J]. Chem World, 2020(61):662-668.
[10] LIU Y, CAI Y, HE C, et al. Research progress on anticancer properties and pharmaceutical applications of plumbagin[J]. Am J Tradit Chin Med, 2017, 45(3):423-441
[11] PEI Q, HU X, LIU S, et al. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma[J]. J Controlled Release, 2017, 254:23-33.
[12] MEDINA O P, ZHU Y,KAIREMO K. Targeted liposomal drug delivery in cancer[J]. Curr Pharm Des, 2004, 10(24):2981-2989.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家药监局药物制剂体内外相关性技术研究重点实验室开放课题资助(2022-KFKT-002)
{{custom_fund}}