过程分析技术在药物3D打印过程中的应用进展

董茹悦, 韩晓璐, 王增明, 万鲲, 洪晓轩, 张慧, 刘楠, 李明媛, 郑爱萍

中国药学杂志 ›› 2025, Vol. 60 ›› Issue (3) : 214-222.

PDF(2214 KB)
PDF(2214 KB)
中国药学杂志 ›› 2025, Vol. 60 ›› Issue (3) : 214-222. DOI: 10.11669/cpj.2025.03.002
综述

过程分析技术在药物3D打印过程中的应用进展

  • 董茹悦1,2, 韩晓璐1, 王增明1, 万鲲3, 洪晓轩1, 张慧1, 刘楠1, 李明媛2*, 郑爱萍1*
作者信息 +

Progress in the Application of Process Analytical Technology in the Drug 3D Printing Process

  • DONG Ruyue1,2, HAN Xiaolu1, WANG Zengming1, WAN Kun3, HONG Xiaoxuan1, ZHANG Hui1, LIU Nan1, LI Mingyuan2*, ZHENG Aiping1*
Author information +
文章历史 +

摘要

随着科学技术的快速发展,3D打印技术在个性化药物制造的应用日益成熟,为患者和制药行业提供了创新的解决方案。由于3D打印过程的集成化,可调控参数较多,为保证产品质量,需要对打印过程进行分析监控,从而优化打印过程,降低风险。过程分析技术(process analytical technology, PAT)可通过系统控制措施来确保产品质量与预期用途之间的一致性,解决了制药生产批抽样检验带来的局限性、偶然性和滞后性等问题,因此制药工业界已开始引入PAT来共同管理生产过程。基于以上背景,为整合当前研究成果,识别PAT应用中的挑战与机遇,从而为行业的实践和未来研究提供参考,笔者简要介绍了PAT相关法规、模型建立方法,列举了常用的PAT工具,总结了PAT在药物3D打印过程中的应用,并结合PAT的优点和国内外应用现状,评估当前监管环境,分析了目前3D打印药物及PAT面临的挑战。

Abstract

With the rapid development of science and technology, the application of 3D printing technology in personalized drug manufacturing is becoming increasingly mature, providing innovative solutions for patients and the pharmaceutical industry. Due to the integration of the 3D printing process, there are more adjustable parameters, and the printing process needs to be analyzed and monitored so as to optimize the printing process and reduce the risk thus to ensure the quality of the product. Process analytical technology (PAT) can ensure the consistency between product quality and intended use through systematic control measures, solving the limitations, contingencies and lags associated with pharmaceutical batch sampling, so the pharmaceutical industry has begun to introduce PAT technology to co-manage the production process. Based on the above background, this paper aims to integrate current research findings, dentify the challenges and opportunities associated with the application of PAT, and provide references for industry practices and future research. This paper briefly introduces PAT-related regulations, model building methods, lists commonly used PAT tools, and summarizes the application of PAT in the process of drug 3D printing. Combined with the advantages of PAT and the current status of domestic and international applications, we also evaluates the current regulatory environment and analyzes the current challenges faced by 3D printed drugs and PAT.

关键词

3D打印 / 个性化 / 药物制造 / 过程分析技术

Key words

3D printing / personalization / drug manufacturing / process analytical technology

引用本文

导出引用
董茹悦 , 韩晓璐 , 王增明 , 万鲲 , 洪晓轩 , 张慧 , 刘楠 , 李明媛 , 郑爱萍. 过程分析技术在药物3D打印过程中的应用进展[J]. 中国药学杂志, 2025, 60(3): 214-222 https://doi.org/10.11669/cpj.2025.03.002
DONG Ruyue , HAN Xiaolu , WANG Zengming , WAN Kun , HONG Xiaoxuan , ZHANG Hui , LIU Nan , LI Mingyuan , ZHENG Aiping. Progress in the Application of Process Analytical Technology in the Drug 3D Printing Process[J]. Chinese Pharmaceutical Journal, 2025, 60(3): 214-222 https://doi.org/10.11669/cpj.2025.03.002
中图分类号: R944   

参考文献

[1] ZHENG Y, DENG F, WANG B, et al. Melt extrusion deposition (MEDTM) 3D printing technology-A paradigm shift in design and development of modified release drug products[J]. Int J Pharmaceut, 2021, 602: 120639. DOI: 10. 1016/j. ijpharm. 2021. 120639.
[2] TRENFIELD S J, AWAD A, GOYANES A, et al. 3D printing pharmaceuticals: drug development to frontline care[J]. Trends Pharmacol Sci, 2018, 39(5): 440-451.
[3] EL AITA I, BREITKREUTZ J, QUODBACH J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing[J]. Eur J Pharm Biopharm, 2019, 134: 29-36.
[4] ECONOMIDOU S N, PERE C P P, REID A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery[J]. Mat Sci Eng C-Mater, 2019, 102: 743-755.
[5] ARAFAT B, WOJSZ M, ISREB A, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets[J]. Eur J Pharm Sci, 2018, 118: 191-199.
[6] CHAI W, WEI Q, YANG M, et al. The printability of three water based polymeric binders and their effects on the properties of 3D printed hydroxyapatite bone scaffold[J]. Ceram Int, 2020, 46(5): 6663-6671.
[7] RAZVI S Z, MA S, ZHONG Q, et al. Phase-appropriate application of process analytical technology for early pharmaceutical development of oral solid dosage forms—the case study of uniformity screening of dosage units and blends[J]. AAPS J, 2023, 25(5): 90. DOI: 10. 1208/s12248-023-00854-x.
[8] KLEINEBUDDE P, KHINAST J, RANTANEN J. Continuous Manufacturing of Pharmaceuticals [M]. Hoboken: John Wiley & Sons, 2017.
[9] TESTA C J, HU C, SHVEDOVA K, et al. Design and commercialization of an end-to-end continuous pharmaceutical production process: a pilot plant case study[J]. Org Process Res Dev, 2020, 24(12): 2874-2889.
[10] TANG Y F, WU W Z, WANG J, et al. Research and application of continuous manufacturing for oral solid dosage forms[J]. Chin J Pharm (中国医药工业杂志), 2022, 53(9): 1227-1239.
[11] XIE S G, HUANG Y, SUN X, et al. Regulation tools and application progress of process analysis technoloogy in pharmaceutical industry[J]. Chin Pharm J (中国药学杂志), 2022, 57(19): 1589-1595.
[12] XUE X Y, HONG X X. Overview and application of general chapters of chemometrics in pharmacopoeias[J]. Chin Pharm J (中国药学杂志), 2023, 58(11): 1049-1056.
[13] BEATTIE J R, ESMONDE-WHITE F W. Exploration of principal component analysis: deriving principal component analysis visually using spectra[J]. Appl Spectrosc Rev, 2021, 75(4): 361-375.
[14] MYAKALWAR A K, SREEDHAR S, BARMAN I, et al. Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis[J]. Talanta, 2011, 87: 53-59.
[15] BIANCOLILLO A, MARINI F. Chemometric methods for spectroscopy-based pharmaceutical analysis[J]. Front Chem, 2018, 6(6): 576. DOI: 10. 3389/fchem. 2018. 00576.
[16] BAUTISTA R, ABERASTURI F, JIMENEZ A, et al. Simultaneous spectrophotometric determination of drugs in pharmaceutical preparations using multiple linear regression and partial least-squares regression, calibration and prediction methods[J]. Talanta, 1996, 43(12): 2107-2115.
[17] MAZUREK S, SZOSTAK R. Quantitative determination of diclofenac sodium and aminophylline in injection solutions by FT-Raman spectroscopy[J]. J Pharm Biomed, 2006, 40(5): 1235-1242.
[18] XIE Y, SONG Y, ZHANG Y, et al. Near-infrared spectroscopy quantitative determination of Pefloxacin mesylate concentration in pharmaceuticals by using partial least squares and principal component regression multivariate calibration[J]. Spectrochim Acta A, 2010, 75(5): 1535-1539.
[19] YANG T L, SZEWC J, ZHONG L, et al. The use of near-infrared as process analytical technology (PAT) during 3D printing tablets at the point-of-care[J]. Int J Pharm, 2023, 642: 123073.DOI: 10. 1016/j. ijpharm. 2023. 123073.
[20] PAUDEL A, RAIJADA D, RANTANEN J. Raman spectroscopy in pharmaceutical product design[J]. Adv Drug Deliv Rev, 2015, 89: 3-20.
[21] BAI L CHEN M M, WANG Y Z, et al. Development and validation of the determination of drug-antibody ratio for an antibody-drug conjugate by UV spectroscopy[J]. Chin Med Biotechnol (中国医药生物技术), 2024, 19(1): 22-29.
[22] KHORASANI M, AMIGO J M, BERTELSEN P, et al. Process optimization of dry granulation based tableting line: Extracting physical material characteristics from granules, ribbons and tablets using near-IR (NIR) spectroscopic measurement[J]. Powder Technol, 2016, 300: 120-125.
[23] NARANG A S, STEVENS T, MACIAS K, et al. Application of in-line focused beam reflectance measurement to Brivanib alaninate wet granulation process to enable scale-up and attribute-based monitoring and control strategies[J]. J Pharm Sci-Us, 2017, 106(1): 224-233.
[24] NAGY B, FARKAS A, GYÜRKÉS M, et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process[J]. Int J Pharm, 2017, 530(1/2): 21-29.
[25] JOHANSSON J, SPARÉN A, SVENSSON O, et al. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules[J]. Appl Spectrosc, 2007, 61(11): 1211-1218.
[26] KOIDE T, TAKEUCHI Y, OTAKI T, et al. Quantification of a cocrystal and its dissociated compounds in solid dosage form using transmission Raman spectroscopy[J]. J Pharm Biomed, 2020, 177: 112886. DOI: 10. 1016/j. jpba. 2019. 112886.
[27] LI Y, IGNE B, DRENNEN Ⅲ J K, et al. Method development and validation for pharmaceutical tablets analysis using transmission Raman spectroscopy[J]. Int J Pharm, 2016, 498(1/2): 318-325.
[28] WANG X, MAO D Z, YANG Y J. Calibration transfer between modelled and commercial pharmaceutical tablet for API quantification using backscattering NIR, Raman and transmission Raman spectroscopy (TRS)[J]. J Pharm Biomed, 2021, 194: 113766. DOI: 10. 1016/j. jpba. 2020. 113766.
[29] SHIMAMURA R, KOIDE T, HISADA H, et al. Pharmaceutical quantification with univariate analysis using transmission Raman spectroscopy[J]. Drug Dev Ind Pharm, 2019, 45(9): 1430-1436.
[30] VARGAS J M, NIELSEN S, CÁRDENAS V, et al. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product[J]. Int J Pharm, 2018, 538(1/2): 167-178.
[31] BASIT A W, TRENFIELD S J. 3D printing of pharmaceuticals and the role of pharmacy[J]. Pharm J, 2022, 308(7959). DOI: 10. 1211/PJ. 2022. 1. 135581.
[32] CHEN G, XU Y, KWOK P C L, et al. Pharmaceutical applications of 3D printing[J]. Addit Manuf, 2020, 34: 101209. DOI: 10. 1016/j. addma. 2020. 101209.
[33] GHOSH U, NING S, WANG Y, et al. Addressing unmet clinical needs with 3D printing technologies[J]. Adv Healthc Mater, 2018, 7(17): e1800417. DOI: 10. 1002/adhm. 201800417.
[34] AWAD A, TRENFIELD S J, GOYANES A, et al. Reshaping drug development using 3D printing[J]. Drug Discov Today, 2018, 23(8): 1547-1555.
[35] DE BEER N. Advances in three dimensional printing-state of the art and future perspectives[J]. J New Gener Sci, 2006, 4(1): 21-49.
[36] LAMPROU D A. 3D Printing of pharmaceuticals and drug delivery devices[J]. Pharmaceutics, 2020, 12(3): 266. DOI: 10. 3390/pharmaceutics12030266.
[37] BÁCSKAY I, UJHELYI Z, FEHÉR P, et al. The evolution of the 3D-printed drug delivery systems: a review[J]. Pharmaceutics, 2022, 14(7): 1312. DOI: 10. 3390/pharmaceutics14071312.
[38] JAMRÓZ W, SZAFRANIEC J, KUREK M, et al. 3D printing in pharmaceutical and medical applications-recent achievements and challenges[J]. Pharm Res-Dordr, 2018, 35: 1-22.
[39] PALO M, HOLLÄNDER J, SUOMINEN J, et al. 3D printed drug delivery devices: perspectives and technical challenges[J]. Expert Rev Med Devic, 2017, 14(9): 685-696.
[40] SUN Y, SOH S. Printing tablets with fully customizable release profiles for personalized medicine[J]. Adv Mater, 2015, 27(47): 7847-7853.
[41] STEPHEN M, DAVID J, GREGORY T, et al. Pharmaceutical Manufacturing Handbook: Production and Processes[M]. Vol 1. Hoboken, New Jersey: Wiley, 2008: 3-33.
[42] VENTOLA C L. Medical applications for 3D printing: current and projected uses[J]. P T, 2014, 39(10): 704-711.
[43] STRAUB J. Initial work on the characterization of additive manufacturing (3D printing) using software image analysis[J]. Machines, 2015, 3(2): 55-71.
[44] EL AITA I, RAHMAN J, BREITKREUTZ J, et al. 3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing[J]. Eur J Pharm Biopharm, 2020, 157: 59-65.
[45] MATHEW E, PITZANTI G, LARRAÑETA E, et al. 3D printing of pharmaceuticals and drug delivery devices[J]. Pharmaceutics. 2020, 12(3): 266. DOI: 10. 3390/pharmaceutics12030266.
[46] DO A V, SMITH R, ACRI T M, et al. Functional 3D Tissue Engineering Scaffolds[M]. Vol 9. Cambridge: Woodhead Publishing, 2018: 203-234.
[47] ZHANG J, YANG W, VO A Q, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation[J]. Carbohydr Polym, 2017, 177: 49-57.
[48] GOYANES A, WANG J, BUANZ A, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics[J]. Mol Pharm, 2015, 12(11): 4077-4084.
[49] OKWUOSA T C, PEREIRA B C, ARAFAT B, et al. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy[J]. Pharm Res-Dordr, 2017, 34: 427-437.
[50] ALHNAN M A, OKWUOSA T C, SADIA M, et al. Emergence of 3D printed dosage forms: opportunities and challenges[J]. Pharm Res-Dordr, 2016, 33: 1817-1832.
[51] JØRGENSEN A K, ONG J J, PARHIZKAR M, et al. Advancing non-destructive analysis of 3D printed medicines[J]. Trends Pharmacol Sci, 2023, 44(6): 379-393.
[52] TRENFIELD S J, TAN H X, GOYANES A, et al. Non-destructive dose verification of two drugs within 3D printed polyprintlets[J]. Int J Pharmaceut, 2020, 577: 119066. DOI: 10. 1016/j. ijpharm. 2020. 119066.
[53] TRENFIELD S J, XU X, GOYANES A, et al. Releasing fast and slow: non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy[J]. Int J Pharm-X, 2023, 5: 100148. DOI: 10. 1016/j. ijpx. 2022. 100148.
[54] YANG T L, STOGIANNARI M, JANECZKO S, et al. Towards point-of-care manufacturing and analysis of immediate-release 3D printed hydrocortisone tablets for the treatment of congenital adrenal hyperplasia[J]. Int J Pharm, 2023, 642: 123072. DOI: 10. 1016/j. ijpharm. 2023. 123072.
[55] STRANZINGER S, WOLFGANG M, KLOTZ E, et al. Near-infrared hyperspectral imaging as a monitoring tool for on-demand manufacturing of inkjet-printed formulations[J]. Aaps Pharmscitech, 2021, 22(6): 211. DOI: 10. 1208/s12249-021-02091-x.
[56] CAO L, ZHU J S, GUAN Y Y, et al. Research progress of Raman spectroscopy in pharmaceutical analysis[J]. J Light Sc (光散射学报), 2019, 31(2): 101-111.
[57] EDINGER M, BAR-SHALOM D, RANTANEN J, et al. Visualization and non-destructive quantification of inkjet-printed pharmaceuticals on different substrates using Raman spectroscopy and Raman chemical imaging[J]. Pharm Res-Dordr, 2017, 34: 1023-1036.
[58] TRENFIELD S J, JANUSKAITE P, GOYANES A, et al. Prediction of solid-state form of SLS 3D printed medicines using NIR and Raman spectroscopy[J]. Pharmaceutics, 2022, 14(3): 589. DOI: 10. 3390/pharmaceutics14030589.
[59] EDINGER M, IFTIMI L-D, MARKL D, et al. Quantification of inkjet-printed pharmaceuticals on porous substrates using Raman spectroscopy and near-infrared spectroscopy[J]. AAPS Pharmscitech, 2019, 20: 1-10.
[60] BENDICHO-LAVILLA C, RODRÍGUEZ-POMBO L, JANUSKAITE P, et al. Ensuring the quality of 3D printed medicines: Integrating a balance into a pharmaceutical printer for in-line uniformity of mass testing[J]. J Drug Deliv Sci Technol, 2024, 92: 105337. DOI: 10. 1016/j. jddst. 2024. 105337.
[61] WANG L, XU M E. Method and device for monitoring structural-mechanical composite parameters in 3D Printing Process: China, 202310029191. 3[P]. 2023-05-23.
[62] DÍAZ-TORRES E, RODRÍGUEZ-POMBO L, ONG J J, et al. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing[J]. Int J Pharm-X, 2022, 4: 100133. DOI: 10. 1016/j. ijpx. 2022. 100133.
[63] SAXENA A, MALVIYA R. 3D printable drug delivery systems: next-generation healthcare technology and regulatory aspects[J]. Curr Pharm Design, 2023, 29(35): 2814-2826.
[64] YU L X, AMIDON G, KHAN M A, et al. Understanding pharmaceutical quality by design[J]. AAPS J, 2014, 16: 771-783.
[65] LAWRENCE X Y, KOPCHA M. The future of pharmaceutical quality and the path to get there[J]. Int J Pharm, 2017, 528(1/2): 354-359.

基金

国家重点研发计划资助(2023YFC2706100)
PDF(2214 KB)

Accesses

Citation

Detail

段落导航
相关文章

/