目的 建立野生和栽培夏枯草的HPLC指纹图谱,为夏枯草药材的鉴别和质量控制提供依据。方法 采用高效液相色谱法对28批不同产地的野生和栽培药材进行测定,运用主成分分析和最小偏二乘法-判别分析对其进行模式识别研究,分类并筛选其主要差异性组分。结果 建立了野生与栽培夏枯草的HPLC指纹图谱,得到12个共有峰,各产地指纹图谱相似度较高。主成分分析不能完全区分野生与栽培夏枯草,最小偏二乘法-判别分析能进行明确的区分,主要导致差异的成分有6个,其中4个为芦丁、迷迭香酸、咖啡酸和木犀草素。结论 指纹图谱与模式识别方法相结合可以区分野生和栽培夏枯草,可以作为夏枯草的质量控制和评价的有效手段之一。
Abstract
OBJECTIVE To develop a method of fingerprint analysis of Prunella vulgaris by HPLC for the quality control of P. vulgaris. METHODS Twenty-eight samples of wild and cultivated P. vulgaris. obtained from different habitats were analyzed. The difference in the chromatographic fingerprints of P. vulgaris.samples between the two varieties was identified by chemometric methods including principal component analysis (PCA) and partial least squares discriminate analysis (PLS-DA). The selected biomarkers were identified by comparing with reference standards. RESULTS The fingerprint of P. vulgaris was established, and 12 common peaks and good similarities were found in the HPLC fingerprints of P. vulgaris from different habitats. PLS-DA result showed obvious distinction between the two varieties of P. vulgaris, while PCA showed poor distinguishing ability. Six compounds were screened as biomarkers, representing major differences between the two varieties. Four of them were identified as rutinum, rosmarinic acid, caffeic acid, and luteolin. CONCLUSION The fingerprint analysis combined with chemical pattern recognition can be applied as a measure for the quality control and comprehensive evaluation of P. vulgaris.
关键词
夏枯草 /
HPLC指纹图谱 /
模式识别 /
主成分分析 /
偏最小二乘法-判别分析
{{custom_keyword}} /
Key words
Prunella vulgaris /
HPLC fingerprint /
pattern recognition /
principal component analysis /
partial least squares discriminate analysis
{{custom_keyword}} /
中图分类号:
R284
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ch.P(2015) VoI Ⅰ(中国药典2015版:一部)[S]. 2015:280.
[2] PENG Q, TIAN R, CHEN F, et al. Discrimination of producing area of Chinese Tongshan kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods[J]. Food Chem, 2015, 178:301-305. doi:10.1016/foodchem.2015.01.023.
[3] GUO L, DUAN L, LIU K, et al. Chemical comparison of Tripterygium wilfordii and Tripterygium hypoglaucum based on quantitative analysis and chemometricsmethods[J]. J Pharm Biomed Anal , 2014, 95(2):220-228.
[4] BEVILACQUA M, MARINI F. Local classification: locally weighted-partial least squares-discriminant analysis (LW-PLS-DA)[J]. Anal Chim Acta, 2014, 838(8):20-30.
[5] MIAO Q, LUO G M, LUO Y J, et al. Multiple wavelength HPLC fingerprint and chemical pattern recognition of Gardeniae Fructus[J]. Chin Tradit Herb Drugs(中草药), 2014, 45(21):3159-3164.
[6] LIU J, CHEN X F, YANG W Y, et al. HPLC fingerprint on wild germplasm resource of Ophiopog on japonicas in Sichuan and its chemical pattern recognition[J]. Chin Tradit Herb Drugs(中草药), 2010, 41(11):1875-1881.
[7] LIU J, CHEN X F, ZHOU Y F. Progress on chemical pattern recognition in traditional Chinese[J]. China J Chin Mate Med(中国中药杂志), 2012,37(8):1081-1088.
[8] LEE J W, JI S H, LEE M K, et al. Metabolomics based on UPLC-QTOF/MS applied for the discrimination of Cynanchumwilfordii and Cynanchumauriculatum[J].Metabolomics, 2015, 5(152). doi:10.4172/2153-0769.1000152.
[9] DELUCIA F C, GOTTFRIED J L. Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification[J]. Spectro Chimica Acta Part B:Atomic Spectroscopy, 2011, 66(2):122-128.
[10] QIN W, BA Y Y, ZHANG N Z, et al. HPLC fingerprint analysis of Prunella vulgaris from different habitat[J]. China J Tradit Chin Med Pharm(中华中医药杂志), 27(5):1418-1420.
[11] XU Z D, YAO Z D, LIU J Y, et al. Study on HPLC fingerprint of Prunella vulgaris [J]. J Chin Med Mater(中药材), 2012, 35(8):1234-1237.
[12] ZHANG J X, MA Y, XIAO H, et al. Study on selfheal materials HPLC fingerprint in the different production region [J]. J Chengdu Univ (Nat Sci Ed)(成都大学学报),2013, 32(1):20-23.
[13] FANG L, LING N M. Quality assessment of Spica Prunellae by HPLC fingerprint and pattern recognition [J].Chin Arch Tradit Chin Med(中华中医药学刊), 2012(9):2034-2037.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(81503041);中医药行业科研专项(201507002);教育部高等学校博士学科点专项科研基金(20124323120004);湖湘青年科技创新创业平台资助项(2013);一方创新课题(2015YF04);研究生创新课题[2016(X)4]
{{custom_fund}}