Research Progress of uPAR-Targeted Nano-Delivery Systems in Tumor Diagnosis and Treatment
ZHAI Bing-tao1, TIAN Huan2, SUN Jing1, ZHANG Xiao-fei1, ZOU Jun-bo1, CHENG Jiang-xue1, GUO Dong-yan1*
1. State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; 2. Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
Abstract:Urokinase-type plasminogen activator receptor (uPAR) is closely related to the invasion and metastasis, angiogenesis, cell proliferation and apoptosis, multidrug resistance and prognosis of malignant tumors. uPAR is almost non-existent in healthy tissues, but it is highly expressed in a variety of malignant tumors, making it an ideal target for tumor diagnosis and treatment. In recent years, a variety of uPAR-targeted nano-drug delivery systems have shown good tumor diagnosis and treatment potential. It has been reviewed that the research progress of uPAR-targeted nano-delivery systems in tumor diagnosis and treatment.
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
WU J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application[J]. J Pers Med, 2021, 11(8):771. Doi: 10.3390/jpm11080771.
[3]
SUBHAN M A, YALAMARTY S S K, FILIPCZAK N, et al. Recent advances in tumor targeting via EPR effect for cancer treatment[J]. J Pers Med, 2021, 11(6):571. Doi: 10.3390/jpm11060571.
[4]
GAURAV I, WANG X, THAKUR A, et al. Peptide-conjugated nano delivery systems for therapy and diagnosis of cancer[J]. Pharmaceutics, 2021, 13(9):1433. Doi: 10.3390/pharmaceutics13091433.
[5]
REDDY S, TATIPARTI K, SAU S, et al. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors[J]. Drug Discov Today, 2021, 26(8):1944-1952.
[6]
CHENG X, GAO J, DING Y, et al. Multi-functional liposome: A powerful theranostic nano-platform enhancing photodynamic therapy[J]. Adv Sci (Weinh), 2021, 8(16):e2100876. Doi: 10.1002/advs.202100876.
[7]
JAIN P, KATHURIA H, MOMIN M. Clinical therapies and nano drug delivery systems for urinary bladder cancer[J]. Pharmacol Ther, 2021, 226: 107871. Doi: 10.1016/j.pharmthera.2021.107871.
[8]
LI S A, NAPOLITANO F, MONTUORI N, et al. The urokinase receptor: A multifunctional receptor in cancer cell biology. Therapeutic implications[J]. Int J Mol Sci, 2021, 22(8):4111. Doi: 10.3390/ijms22084111.
[9]
YUAN C, GUO Z, YU S, et al. Development of inhibitors for uPAR: Blocking the interaction of uPAR with its partners[J]. Drug Discov Today, 2021, 26(4):1076-1085.
[10]
MAHMOOD N, MIHALCIOIU C, RABBANI S A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR):Diagnostic, prognostic, and therapeutic applications[J]. Front Oncol, 2018, 8: 24. Doi: 10.3389/fonc.2018.00024.
[11]
BAART V M, HOUVAST R D, DE GEUS-OEI L F, et al. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer[J]. Ejnmmi Res, 2020, 10(1):87. Doi: 10.1186/s13550-020-00673-7.
[12]
MONTUORI N, PESAPANE A, ROSSI F W, et al. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer[J]. Transl Med UniSa, 2016, 15: 15-21.
[13]
MADUNIC J. The urokinasep activator system in human cancers: An overview of its prognostic and predictive role[J]. Thromb Haemost, 2018, 118(12):2020-2036.
[14]
STOPPELLI M P, CORTI A, SOFFIENTINI A, et al. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes[J]. Proc Natl Acad Sci USA, 1985, 82(15):4939-4943.
[15]
KUMAR A A, BUCKLEY B J, RANSON M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets[J]. Biomolecules, 2022, 12(2):152. Doi: 10.3390/biom12020152.
[16]
METRANGOLO V, PLOUG M, ENGELHOLM L H. The urokinase receptor (uPAR) as a "Trojan horse" in targeted cancer therapy: Challenges and opportunities[J]. Cancers (Basel), 2021, 13(21):5376. Doi: 10.3390/cancers13215376.
[17]
ZHAI B T, TIAN H, SUN J, et al. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer[J]. J Transl Med, 2022, 20(1):135. Doi: 10.1186/s12967-022-03329-3.
[18]
XU X, CAI Y, WEI Y, et al. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM)[J]. PLos One, 2014, 9(1):e85349. Doi: 10.1371/journal.pone.0085349.
[19]
MAHMOOD N, ARAKELIAN A, KHAN H A, et al. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions[J]. Bone Res, 2020, 8: 18. Doi: 10.1038/s41413-020-0094-3.
[20]
LI Y, PARRY G, CHEN L, et al. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope[J]. J Mol Biol, 2007, 365(4):1117-1129.
[21]
DURISETI S, GOETZ D H, HOSTETTER D R, et al. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration[J]. J Biol Chem, 2010, 285(35):26878-26888.
[22]
ZHAO B, GANDHI S, YUAN C, et al. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation[J]. J Mol Biol, 2015, 427(6 Pt B):1389-1403.
[23]
MASUCCI M T, MINOPOLI M, Di CARLUCCIO G, et al. Therapeutic strategies targeting urokinase and its receptor in cancer[J]. Cancers (Basel), 2022, 14(3):498. Doi: 10.3390/cancers14030498.
[24]
WANG L.Study on uPAR in the metastasis of ovarian cancer and anti-uPAR chimeric antigen receptor against ovarian cancer[D].Changchun:Jilin University,2020.
[25]
HUAI Q, MAZAR A P, KUO A, et al. Structure of human urokinase plasminogen activator in complex with its receptor[J]. Science, 2006, 311(5761):656-659.
[26]
WANG M, LÖWIK D W P M, MILLER A D, et al. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles[J]. Bioconjug Chem, 2009, 20(1):32-40.
[27]
PLOUG M, ØSTERGAARD S, GÅRDSVOLL H, et al. Peptide-derived antagonists of the urokinase receptor. affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation[J]. Biochemistry-US, 2001, 40(40):12157-12168.
[28]
LLINAS P, LE DU MH, GÅRDSVOLL H, et al. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide[J]. Embo J, 2005, 24(9):1655-1663.
[29]
LIU H X, ZHAO F, MA Y L, et al. Research progress of nanometer contrast agent in tumor diagnosis[J]. Chin Pharm J(中国药学杂志), 2021, 56(18):1466-1475.
[30]
YANG Y, MENG J, WEN T, et al. The preparation of uPAR-targeted MR probe and its targetability to breast cancer cells[J]. Chin J Biomedl Eng(中国生物医学工程学报), 2018, 37(4):481-488.
[31]
SUN C, GRADZIELSKI M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors[J]. Adv Colloid Interface Sci, 2022, 300: 102579. Doi: 10.1016/j.cis.2021.102579.
[32]
YAMINI S, GUNASEELAN M, GANGADHARAN A, et al. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb,Er nanocomposite[J]. Nanotechnology, 2021, 33(8). Doi: 10.1088/1361-6528/ac37e4.
[33]
CAO K.uPAR-targeted upconversion nanoparticles for in vivo imaging of pancreatic cancer[D].Shanghai: The Second Military Medical University,2015.
[34]
CAO K, RONG T J, WEI H M, et al. Magnetic/upconversion fluorescent NaGdF4: Yb, Er nanoparticle-based dual-modal molecular probes for in-vivo imaging of pancreatic cancer[J]. DiagnImag Intervent Radiol(影像诊断与介入放射学), 2016, 25(2):91-97.
[35]
LI S, CHENG D, HE L, et al. Recent progresses in NIR-Ⅰ/Ⅱ fluorescence imaging for surgical navigation[J]. Front Bioeng Biotechnol, 2021, 9: 768698. Doi: 10.3389/fbioe.2021.768698.
[36]
LI H, WANG P, GONG W, et al. Dendron-grafted polylysine-based dual-modal nanoprobe for ultra-early diagnosis of pancreatic precancerosis via targeting a urokinase-type plasminogen activator receptor[J]. Adv Healthc Mater, 2018, 7(5). Doi: 10.1002/adhm.201700912.
[37]
YANG L, MAO H, CAO Z, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles[J]. Gastroenterology, 2009, 136(5):1514-1525.
[38]
YANG L, SAJJA H K, CAO Z, et al. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection[J]. Theranostics, 2013, 4(1):106-118.
[39]
DU J, YANG S, QIAO Y, et al. Recent progress in near-infrared photoacoustic imaging[J]. Biosens Bioelectron, 2021, 191: 113478. Doi: 10.1016/j.bios.2021.113478.
[40]
XI L, GROBMYER S R, ZHOU G, et al. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents[J]. J Biophotonics, 2014, 7(6):401-409.
[41]
ZHOU M H, LIAO C Y, REN Z Y, et al. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chin Optics(中国光学), 2013, 6(5):633-642.
[42]
CHEN W, XU S, WANG X, et al. Single cell detection using intracellularly-grown-Au-nanoparticle based surface-enhanced Raman scattering spectroscopy for nasopharyngeal cell line classification[J]. Anal Methods, 2021, 13(28):3147-3153.
[43]
LI L, LIAO M, CHEN Y, et al. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells[J]. J Mater Chem B, 2019, 7(5):815-822.
[44]
YU S, LI L, LYU X, et al. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit[J]. Sci Rep, 2016, 6: 20399. Doi: 10.1038/srep20399.
[45]
KRISHNAN S K, SINGH E, SINGH P, et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors[J]. Rsc Adv, 2019, 9(16): 8778-8881.
[46]
ROBERTS A, TRIPATHI P P, GANDHI S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer[J]. Biosens Bioelectron, 2019, 141: 111398. Doi: 10.1016/j.bios.2019.111398.
[47]
YANG L, CAO Z, SAJJA H K, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging[J]. J Biomed Nanotechnol, 2008, 4(4):439-449.
[48]
BELFIORE L, SAUNDERS D N, RANSON M, et al. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer[J]. Pharmaceutics, 2020, 12(7):641.
[49]
ZHAI B, CHEN P, WANG W, et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment[J]. Cancer Biol Med, 2020, 17(3):676-692.
[50]
PARK J Y, SHIN Y, WON W R, et al. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells[J]. Int J Nanomed, 2021, 16: 5437-5449.
[51]
ZHU L, STALEY C, KOOBY D, et al. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy[J]. Cancer Lett, 2017, 388: 139-148.
[52]
LEE G Y, QIAN W P, WANG L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer[J]. ACS Nano, 2013, 7(3):2078-2089.
[53]
KIM J, SHIM M K, CHO Y J, et al. The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis[J]. Biomaterials, 2021, 279: 121189. Doi: 10.1016/j.biomaterials.2021.121189.
[54]
GAO N, BOZEMAN E N, QIAN W, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery[J]. Theranostics, 2017, 7(6):1689-1704.
[55]
BELFIORE L, SAUNDERS D N, RANSON M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities[J]. J Controlled Release, 2018, 277: 1-13.
[56]
SEIDI K, NEUBAUER H A, MORIGGL R, et al. Tumor target amplification: Implications for nano drug delivery systems[J]. J Controlled Release, 2018, 275: 142-161.
[57]
AHMED M S U, SALAM A B, YATES C, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer[J]. Int J Nanomed, 2017, 12: 6973-6984.
[58]
MILLER-KLEINHENZ J, GUO X, QIAN W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer[J]. Biomaterials, 2018, 152: 47-62.
[59]
GHOSH N, HOSSAIN U, MANDAL A, et al. The Wnt signaling pathway: a potential therapeutic target against cancer[J]. Ann Ny Acad Sci, 2019, 1443(1):54-74.
[60]
ASUTHKAR S, GONDI C S, NALLA A K, et al. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/beta-catenin signaling is enhanced in irradiated medulloblastoma cells[J]. J Biol Chem, 2012, 287(24):20576-20589.
[61]
JIANG W X, ZHANG H Q, DING Y, et al. Research progress in nano-drug delivery systems for antitumor multi-drug combinational application[J]. Acta Pharm Sin(药学学报), 2022, 57(1):1-12,275.
[62]
HONG Y, CHE S, HUI B, et al. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine[J]. Biomed Pharmacother, 2019, 112: 108614. Doi: 10.1016/j.biopha.2019.108614.
[63]
JIA F, DU C C, MAO T L, et al. Progress in the use of nanocarriers for co-delivery of genes and chemotherapeutic agents for cancer therapy[J]. Mater Rep(材料导报), 2022(17):1-18.
[64]
ZHOU Z, LIU X, ZHU D, et al. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration[J]. Adv Drug Deliv Rev, 2017, 115: 115-154.
[65]
MA L, REINHARDT F, PAN E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model[J]. Nat Biotechnol, 2010, 28(4):341-347.
[66]
ZHANG T, WU Y, YANG D, et al. Preparation, characterization, and in vitro tumor-suppressive effect of anti-miR-21-equipped RNA nanoparticles[J]. Biochem Biophys Res Commun, 2021, 558: 107-113.
[67]
DEVULAPALLY R, SEKAR N M, SEKAR T V, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy[J]. ACS Nano, 2015, 9(3):2290-2302.
[68]
CHOI Y S, PARK J H, LEE J H, et al. Association between impairment of DNA double strand break repair and decreased ovarian reserve in patients with endometriosis[J]. Front Endocrinol (Lausanne), 2018, 9: 772. Doi: 10.3389/fendo.2018.00772.
[69]
DONG Y, LIAO H, FU H, et al. pH-sensitive shell-core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer[J]. ACS Appl Mater Interfaces, 2019, 11(42):38417-38428.
[70]
YANG M, CAO S, SUN X, et al. Self-assembled naphthalimide conjugated porphyrin nanomaterials with D-A structure for PDT/PTT synergistic therapy[J]. Bioconjug Chem, 2020, 31(3):663-672.
[71]
YANG Y, LIU X, MA W, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy[J]. Biomaterials, 2021, 265: 120456. Doi: 10.1016/j.biomaterials.2020.120456.
[72]
ZHAO L, ZHANG X, WANG X, et al. Recent advances in selective photothermal therapy of tumor[J]. J Nanobiotechnol, 2021, 19(1):335. Doi: 10.1186/s12951-021-01080-3.
[73]
GUNAYDIN G, GEDIK M E, AYAN S. Photodynamic therapy-current limitations and novel approaches[J]. Front Chem, 2021, 9: 691697. Doi: 10.3389/fchem.2021.691697.
[74]
ABRAHAMSE H, HAMBLIN M R. New photosensitizers for photodynamic therapy[J]. Biochem J, 2016, 473(4):347-364.
[75]
LU X L, ZHANG R, YANG P X, et al. Research progress on nanocarrier-loaded zinc phthalocyanine and its derivatives for photodynamic anticancer[J]. Chem Res Appl(化学研究与应用), 2020, 32(3):341-350.
[76]
HOOGENBOEZEM E N, DUVALL C L. Harnessing albumin as a carrier for cancer therapies[J]. Adv Drug Deliv Rev, 2018, 130: 73-89.
[77]
ZHOU X, ZHENG K, LI R, et al. A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging[J]. Acta Biomater, 2015, 23: 116-126.
[78]
LI S, YUAN C, CHEN J, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release[J]. Theranostics., 2019, 9(3):884-899.
[79]
KELLY C, MAJEWSKA P, IOANNIDIS S, et al. Estimating progression-free survival in patients with glioblastoma using routinely collected data[J]. J Neurooncol, 2017, 135(3):621-627.
[80]
CHENG Y, MORSHED R A, AUFFINGER B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy[J]. Adv Drug Deliv Rev, 2014, 66: 42-57.
[81]
ZHAO M, DING J, MAO Q, et al. A novel αvβ3 integrin-targeted NIR-II nanoprobe for multimodal imaging-guided photothermal therapy of tumors in vivo[J]. Nanoscale, 2020, 12(13):6953-6958.
[82]
LI Z, WANG C, CHEN J, et al. uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma[J]. Mater Design, 2021, 198: 109386. Doi:10.1016/j.matdes.2020.109386.
[83]
HU Y, CHI C, WANG S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Adv Mater, 2017, 29(33). Doi: 10.1002/adma.201700448.
[84]
ZHENG D W, LI B, LI C X, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting[J]. ACS Nano, 2016, 10(9):8715-8722.
[85]
DAI Y, DU W, GAO D, et al. Near-infrared-Ⅱ light excitation thermosensitive liposomes for photoacoustic imaging-guided enhanced photothermal-chemo synergistic tumor therapy[J]. Biomater Sci, 2022, 10(2):435-443.
[86]
LI H, WANG P, DENG Y, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma[J]. Biomaterials, 2017, 139: 30-38.
[87]
CARNIELLI C M, MACEDO C C S, DE ROSSI T, et al. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer[J]. Nat Commun, 2018, 9(1):3598. Doi: 10.1038/s41467-018-05696-2.
[88]
GVETADZE S R, XIONG P, LV M, et al. Contrast-enhanced ultrasound mapping of sentinel lymph nodes in oral tongue cancer-a pilot study[J]. Dentomaxillofac Radiol, 2017, 46(3):20160345. Doi: 10.1259/dmfr.20160345.
[89]
YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8):4881-4985.
[90]
ZUO J, HUO M, WANG L, et al. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma[J]. J Mater Chem B, 2020. Doi: 10.1039/d0tb01089h.
[91]
YOU Y. Phosphorescence bioimaging using cyclometalated Ir(III) complexes[J]. Curr Opin Chem Biol, 2013, 17(4):699-707.
[92]
YU S, HUANG G, YUAN R, et al. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer[J]. Biomater Sci, 2020, 8(2):720-738.
[93]
HU X, MANDIKA C, HE L, et al. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis[J]. ACS Appl Mater Interfaces, 2019, 11(43):39688-39705.
[94]
MERTENS H D T, KJAERGAARD M, MYSLING S, et al. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR)[J]. J Biol Chem, 2012, 287(41):34304-34315.
[95]
LIN L, GÅRDSVOLL H, HUAI Q, et al. Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy[J]. J Biol Chem, 2010, 285(14):10982-10992.
[96]
WEI C, MÖLLER C C, ALTINTAS M M, et al. Modification of kidney barrier function by the urokinase receptor[J]. Nat Med, 2008, 14(1):55-63.
[97]
GU N. Creation and clinical translation of antitumor targeted nanomedicines[J]. Prog Pharm Sci(药学进展), 2017, 41(11):801-803.
[98]
WANG Z H, LIU Y L. Progress and prospect in the clinical translation of cancer nanomedicine[J]. Acta Pharm Sin(药学学报), 2022, 57(1):134-141,277.
[99]
LIU J, TANG H, MI P, et al. Research progress on clinical translation of antitumor nanomedicines[J]. Sci Technol Rev(科技导报), 2018, 36(22):118-126.