目的 研究闹羊花素Ⅲ(rhodojaponin Ⅲ,RJ-Ⅲ)的体外经皮渗透特性。方法 利用摇瓶法、皮肤孵育法、Franz扩散池法和胶带剥离法,分别考察RJ-Ⅲ的油水分配系数、RJ-Ⅲ在皮肤中的稳定性、体外经皮渗透参数和不同层次离体皮肤中的储留量。结果 RJ-Ⅲ的油水分配系数为(0.98±0.02);RJ-Ⅲ在皮肤匀浆液中孵化24 h,RSD值为3.98%;离体透皮实验表明在小鼠皮肤、大鼠的活性表皮与皮肤上,RJ-Ⅲ的稳态透皮速率分别是(5.05±0.28) (3.62±0.30)(1.04±0.10) μg·cm-2·h-1,经皮渗透系数分别为7.3×10-3、5.2×10-3、1.4×10-3 cm·h-1;皮肤储留实验表明,与角质层和活性表皮相比,RJ-Ⅲ更多的存在于接收室。结论 RJ-Ⅲ具有良好的经皮稳定性和适宜的经皮渗透特性,为RJ-Ⅲ经皮给药制剂的开发提供理论基础和实验依据。
Abstract
OBJECTIVE To study the in vitro percutaneous permeation properties of rhodojaponin Ⅲ(RJ-Ⅲ). METHODS Bottle-shaking method, skin incubation method, in vitro diffusion cell method, and tape stripping method were used to determine the relevant parameters of RJ-Ⅲ such as oil-water partition coefficient, stability in the skin, percutaneous penetration properties, and the retention amount in different layers of the skin. RESULTS The oil-water partition coefficient of RJ-Ⅲ was(0.98±0.02). The RSD of RJ-Ⅲ concentration was 3.98%,when RJ-Ⅲ was incubated in the skin homogenates for 24 h.Then the in vitro percutaneous penetration parameters of RJ-Ⅲ were investigated in mice skin, rat active epidermis and rat skin. The experiments showed that the steady penetration rate of RJ-Ⅲ was (5.05±0.28), (3.62±0.30), (1.04±0.10) μg·cm-2·h-1, the permeability coefficient of RJ-Ⅲ was 7.3×10-3, 5.2×10-3, 1.4×10-3 cm·h-1, respectively. In terms of skin storage, RJ-Ⅲ was more retention in the receiving compartment than in the stratum corneum and active epidermis. CONCLUSION RJ-Ⅲ possesses appropriate good percutaneous stability and suitable percutaneous permeability properties, which provides a theoretical and experimental basis for the development of percutaneous drug administration preparations for RJ-Ⅲ.
关键词
闹羊花素Ⅲ /
油水分配系数 /
经皮渗透特性 /
稳定性 /
皮肤储留
{{custom_keyword}} /
Key words
rhodojaponin Ⅲ /
oil-water partition coefficient /
percutaneous permeation /
stability /
skin retention
{{custom_keyword}} /
中图分类号:
R917
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CAI Y Q, HU J H, QIN J, et al. Rhododendron Molle(Ericaceae): phytochemistry, pharmacology, and toxicology[J]. Chin J Nat Med(中国天然药物), 2018, 16(6): 401-410.
[2] LI Y, LIU Y B, ZHANG J J, et al. Antinociceptive grayanoids from the roots of Rhododendron molle[J]. J Nat Prod, 2015, 78(12): 2887-2895.
[3] MAO H Y, LI C Y, CUI J J, et al. Rhomotoxin pharmacologic action in lowering blood pressure and slowing heart rate[J]. Chin Med J(Engl), 1982, 95(5): 311-318.
[4] ZHOU J F, LIU T T, ZHANG H Q, et al. Anti-inflammatory grayanane diterpenoids from the leaves of rhododendron molle[J]. J Nat Prod, 2018, 81(1): 151-161.
[5] POPESCU R, KOPP B. The genus Rhododendron: an ethnopharmacological and toxicological review[J]. J Ethnopharmacol, 2013, 147(1): 42-62.
[6] DONG L C, ZHANG X H, MA J, et al. The integrated pharmacokinetics of major rhodojaponins correlates with the cardiotoxicity after oral administration of Rhododendri Mollis Flos extract in rats[J]. J Ethnopharmacol, 2014, 157: 69-78.
[7] CHENG H, DING B, ZHANG N, et al. Extraction of Rhomotoxin and Its LD50[J]. China Pharm(中国药业), 2010, 19(15): 10-11.
[8] ZHANG J Q, ZHAO C C, YANG Q Y, et al. Pharmacokinetics, bioavailability and tissue distribution studies of rhodojaponin Ⅲ in mice using QTRAP LC-MS/MS[J]. Biomed Chromatogr, 2019, 33(11): e4649. Doi: 10.1002/bmc.4649.
[9] CITROME L, ZENI C M, CORRELL C U. Patches: established and emerging transdermal treatments in psychiatry[J]. J Clin Psychiatry, 2019, 80(4):18nr12554.
[10] ZHAO C C, YANG Q Y, WANG Y H, et al. Determination on drug loading and entrapment efficiency of Rhodojaponin-Ⅲ packed mesoporous silica nanoparticles by HPLC-ELSD[J]. Acad J Shanghai Univ Tradit Chin Med (上海中医药大学学报), 2020, 34(5): 72-76.
[11] PU T T. Construction and evaluation of a pramipexole prolonged-release transdermal delivery system[D]. Dalian:Dalian University of Technology, 2016.
[12] HE S W. Research and industrialization of tulobuterol transdermal patch[D]. Jinan:Shandong University, 2020.
[13] CACCAVO D. An overview on the mathematical modeling of hydrogels′ behavior for drug delivery systems[J]. Int J Pharm, 2019, 560: 175-190.
[14] TANG Z Y, GUO X P, WEN X M, et al. Effects of hyaluronic acid with different molecular weight on the transder? mal absorption of reduced glutathione[J].J China Pharm Univ(中国药科大学学报), 2021, 52(2): 203-210.
[15] LIPINSKI C A, LOMBARDO F, DOMINY B W, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46(1-3): 3-26.
[16] ALEXANDER A, DWIVEDI S, AJAZUDDIN N, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery[J]. J Controlled Release, 2012, 164(1): 26-40.
[17] LIU R, WANG C X, TANG X Z, et al. Physical and chemical properties and percutaneous permeation of capsaicin[J]. Chin Pharm J(中国药学杂志), 2012, 47(24): 2008-2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
上海市科委支撑项目资助(14401901400)
{{custom_fund}}