Abstract:In order to provide reference for the development and application of new preparations of proteins and polypeptides, the research progress in new drug delivery systems of this kind of drugs was reviewed. Based on document retrieval, references on new drug delivery systems for proteins and polypeptides such as nanoparticles, liposomes, transfersomes, microspheres and hydrogels in recent 20 years were classified and introduced according to carrier materials, technologies, properties or delivery routes. At present, protein and polypeptide nanoparticles which are widely studied include polylactic acid/glycolic acid copolymer(PLGA) nanoparticles, chitosan nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Liposomes including long circulating liposomes, targeted liposomes, multivesicular liposomes and flexible nano-liposomes have attracted a lot of attention. For microspheres, injection microspheres, oral microspheres and nasal mucosa microspheres are the focus of research. Hydrogels mainly include environmentally sensitive hydrogels, such as thermosensitive hydrogels and pH-sensitive hydrogels. Besides, transfersomes are also introduced. These new technologies can greatly improve the stability of protein and polypeptide, prolong the half-life in vivo, decrease the times of administration, improve the therapeutic effect, reduce the side effects, and realize targeted, sustained and controlled release delivery of such drugs. However, they all have certain limitations, so the research on new pharmaceutical technologies, new excipients, new dosage forms and new drug delivery systems for proteins and polypeptides should be strengthened, so that more new preparations of this type of drugs can be used in clinical practice.
陈敏, 孙萍, 宿洁, 康悦, 李新朋, 张波. 蛋白多肽类药物新型给药系统的研究进展[J]. 中国药学杂志, 2022, 57(15): 1232-1240.
CHEN Min, SUN Ping, SU Jie, KANG Yue, LI Xin-peng, ZHANG Bo. Research Progress in New Drug Delivery Systems for Proteins and Polypeptides. Chinese Pharmaceutical Journal, 2022, 57(15): 1232-1240.
XIN Z S, ZHANG Y Y, JIN X Y, et al. Analysis of listed recombinant protein or peptide products for therapeutic use in China[J]. Chin Pharm Aff(中国药事), 2019, 33(9): 991-997.
[2]
LU M J, FAN H Y. Polypeptide drugs for oral administration with nanoparticles as carriers: current situation, existing problems and developmental prospects[J]. Chin J Tissue Engi Res(中国组织工程研究), 2015, 19(25): 4091-4095.
[3]
ZHU C, ZHANG C, CUI X, et al. Trichosanthin inhibits cervical cancer by regulating oxidative stress-induced apoptosis[J]. Bioengineered, 2021, 12(1): 2779-2790.
[4]
SOWA-ROGOZINSKA N, SOMINKA H, NOWAKOWSKA-GOLACKA J, et al. Intracellular transport and cytotoxicity of the protein toxin ricin[J]. Toxins(Basel), 2019, 11(6): 350. Doi: 10.3390/toxins11060350.
[5]
WEN H, DAI Y N, ZHOU H. Research progress of new peptide and protein drug delivery system[J]. Chongqing Med(重庆医学), 2010, 39(3): 365-369.
[6]
LIN S N, LIN H Q. Research progress in nanoparticles as anticancer drug carrier[J]. Chin German J Glin Oncol(中国肿瘤临床), 2013, 40(6): 363-366.
[7]
RAMESAN R M, SHARMA C P. Challenges and advances in nanoparticle-based oral insulin delivery[J]. Expert Rev Med Devices, 2009, 6(6):665-676.
[8]
DES RIEUX A, FIEVEZ V, GARINOT M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach[J]. J Controlled Release, 2006, 116(1):1-27.
[9]
DU L, MEI X, WANG C, et al. In-vitro/in-vivo studies of the biodegradable poly-(D,L-lactide-co-glycolide) microspheres of a novel luteinizing hormone-releasing hormone antagonist for prostate cancer treatment[J]. Anticancer Drugs, 2011,22(3):262-272.
[10]
PRIWITANINGRUM D L, JENTSCH J, BANSAL R, et al. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo[J]. Int J Pharm, 2020,585:119535,Doi:10.1016/j.ijpharm.2020.119535.
[11]
RIZZI M, MIGLIARIO M, ROCCHETTI V, et al. Epiregulin-loaded PLGA nanoparticles increase human keratinocytes proliferation: preliminary data[J]. Eur Rev Med Pharmacol Sci, 2016, 20(12):2484-2490.
[12]
TAN Y Z. Study on the drug delivery system of Poly(ethylene glycol)-Poly(lactic acid glycolic acid) nanoparticles loaded with H102 peptide[D]. Tianjin:Tianjin Medical University,2013.
[13]
ZHENG A P, ZHANG X Y, BI Y Q, et al. Insulin-loaded bioadhesive poly(lactide-co-glycolide) nanoparticles: preparation,characteristics and biological activity[J]. Chin Pharm J(中国药学杂志), 2011,46(18): 1421-1426.
[14]
SUN R S, ZHANG J B, FANG J N, et al. Application of chitosan nanoparticle served as drug delivery system for cancer therapy[J]. Chin J Clin Pharmacol Ther(中国临床药理学与治疗学), 2021,26(1): 65-75.
[15]
YIN L F, HAN L N, WANG Y, et al. Improvement of oral delivery system of polypeptide proteins by carboxylated chitosan[J]. Guangzhou Med J(广州医药), 2018,49(4): 68-72.
[16]
RAWAT M, MA T Y. Lipopolysaccharide induced increase in CACO-2 intestinal tight junction permeability is mediated by MIR-429 induced degradation of occludin mRNA[J]. Gastroenterol, 2017, 152(5): S53. Doi: 10.1016/S0016-5085(17)30534-6.
[17]
HE Z, SANTOS JL, TIAN H, et al. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin[J]. Biomaterials, 2017,130(1): 28-41.
[18]
GUO TL, WANG C, SHEN LX.Research progress of solid lipid nanoparticles[J]. Acta Neuropharm(神经药理学报),2017,7(6):15-21.
[19]
DARA T, VATANARA A, NABI MEYBODI M, et al. Erythropoietin-loaded solid lipid nanoparticles: Preparation, optimization, and in vivo evaluation[J]. Coll Surf B Biointerfaces, 2019, 178(1): 307-316.
[20]
AKILINEZHAD M A, TANHA S, MONTASERI H, et al. Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid Lipid nanoparticles[J]. Adv Pharm Bull, 2018, 8(2): 245-256.
[21]
LI H Z, HU Y W, YAO H M.The development of solid lipid nanoparticles and its brain targeting[J]. J Tonghua Norm Univ(通化师范学院学报), 2018,39(8): 43-49.
[22]
BLASI P, SCHOUBBEN A, ROMANO G V, et al. Lipid nanoparticles for brain targeting II. Technological characterization[J]. Coll Surf B Biointerfaces, 2013, 110(11): 130-137.
[23]
LIU C X, ZHANG N. Study and application of solid lipid nanoparticles[J]. Food Drug (食品与药品), 2009, 11(7): 57-60.
[24]
XU Y, ZHENG Y, WU L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin[J]. ACS Appl Mater Interfaces, 2018, 10(11):9315-9324.
[25]
ZHENG Y X, HE Q, XU M, et al. Construction of oral insulin-loaded solid lipid nanoparticles and their intestinal epithelial cell transcytosis study[J]. J Sichuan Univ(四川大学学报), 2021,52(4):570-576.
[26]
BI R, SHAO W, WANG Q, et al. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery[J]. J Biomed Nanotechnol, 2009, 5(1):84-92.
[27]
WANG Y. Therapeutic effects of cuprous oxide nanoparticles on prostate cancer and related mechanisms[D]. Shanghai:Second Military Medical University, 2017.
[28]
PANG X C, CAI Z Q, LI Y, et al.Research progress of inorganic nano drug carrier for targeted therapy of glioma[J]. West China J Pharm Sci (华西药学杂志), 2020,35(4):453-457.
[29]
CHEN Y, CHEN H, SHI J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells[J]. Mol Pharm, 2014, 11(8):2495-2510.
[30]
XU X L, HUANG Y. Application of drug combination in anti-tumor nanodrug delivery system[J]. West China J Pharm Sci (华西药学杂志), 2014,29(6):720-722.
[31]
MENG J, JIA W, WANG W, et al. Progress of application of micro-silica gel in pharmaceutical preparation[J]. Silicone Mater(有机硅材料), 2018,32(5):416-420.
[32]
WEGSCHEID M L, MORSHED RA, CHENG Y,et al. The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma[J]. Expert Opin Drug Deliv, 2014,11(6):957-975.
[33]
LI TA, XU D H, GAO J Q.Recent advances in inorganic materials-based nanoparticles to overcome multidrug resistance of cancer cells[J]. Chin Pharm J(中国药学杂志), 2016,51(16):1360-1363.
[34]
TANG Y, LIANG J, WU A, et al. Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis[J]. ACS Appl Mater Interfaces, 2017, 9(32):26648-26664.
[35]
GUHA A, BISWAS N, BHATTACHARJEE K, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation[J]. Drug Deliv, 2016, 23(9):3552-3561.
[36]
JIA L, FANG Z H.Application of new preparation technology in protein polypeptide drugs[J]. China Pharm(中国药业), 2009,18(18):80-82.
[37]
KUMAR G T, GIRI A, KUMAR B T, et al. Nanoliposome is a promising carrier of protein and peptide biomolecule for the treatment of cancer[J]. Anticancer Agents Med Chem, 2016, 16(7):816-831.
[38]
LIU M, HUANG S W.Current research status on the non-parenteral preparations of protein and peptide drugs[J]. Chin J Biochem Pharm(中国生化药物杂志),2007,28(2):142-144.
[39]
SHAH NM, PARIKH J, NAMDEO A, et al. Preparation, characterization and in vivo studies of proliposomes containing Cyclosporine A[J]. J Nanosci Nanotechnol, 2006, 6(9-10):2967-2973.
[40]
YU L, CUI D, YING X Y, et al. Research progress in drug delivery of surface modified lipid nanoparticles[J]. Chin J MAP(中国现代应用药学), 2011,28(2):108-112.
[41]
FANG D K, TANG H X, SHENG Y J, et al. Study on pharmacokinetics of PEG-modified trionycis carapax peptide HGRFG liposome[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2019,36(9):1037-1041.
[42]
LEI Y L, ZHANG P M, CHEN M. Research progress of Chinese patent technology of protein polypeptide drug liposome[J]. Drug Eval Res(药物评价研究), 2021,44(7):1562-1567.
[43]
UNNAM S, PANDURAGAIAH V M, SIDRAMAPPA M A, et al. Gemcitabine-loaded folic acid tagged liposomes: improved pharmacokinetic and biodistribution profile[J]. Curr Drug Deliv, 2019, 16(2): 111-122.
[44]
KUO Y C, CHOU P R. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin[J]. J Pharm Sci, 2014, 103(8): 2484-2497.
[45]
ROTMAN M, WELLING M M, BUNSCHOTEN A, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer′s disease[J]. J Controlled Release, 2015, 203(4):40-50.
[46]
FURUMOTO K, YOKOE J, OGAWARA K, et al. Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition[J]. Int J Pharm, 2007, 329(1-2):110-116.
[47]
LAYEK B, MUKHERJEE B. Tamoxifen citrate encapsulated sustained release liposomes: preparation and evaluation of physicochemical properties[J]. Sci Pharm, 2010, 78(3):507-515.
[48]
ZENG H L, FU X D.Progress in application of polycystic liposomes in drug delivery system[J]. J China Pharm(中国药房), 2014,25(37):3526-3528.
[49]
LI H, MEI X G.Research progresses of multivesicular liposomes in delivery of protein and peptide drugs[J]. Chin Pharm J(中国药学杂志), 2014,49(2):94-98.
[50]
ANGST MS, DROVER DR. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology[J]. Clin Pharmacokinet, 2006, 45(12):1153-1176.
[51]
MU H, WANG Y, CHU Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization[J]. Drug Deliv, 2018, 25(1): 1372-1383.
[52]
WANG T, GAO L, QUAN D. Multivesicular liposome(MVL) sustained delivery of a novel synthetic cationic GnRH antagonist for prostate cancer treatment[J]. J Pharm Pharmacol, 2011, 63(7): 904-910.
[53]
WANG P, WANG S L. Research progress of drug delivery systems of peptide and protein[J]. Chin J Pharm(中国药剂学杂志), 2004,2(3):59-67.
[54]
CHEN M, ZHENG Q, LI X R, et al. The hypocalcem ia effect of saml on calcitonin ultra-flexible liposomes after intranasal adm inistration in rats[J]. Acta Pharm Sin(药学学报), 2007,42(6): 681-686.
[55]
GUO JX, PING QN, SUN GQ,et al.Flexible nano-liposomes as carriers for transdermal delivery of cyclosporine[J]. Chin Pharm J(中国药学杂志), 2000,35(9):595-597.
[56]
YANG T Z, WANG X T, YAN X Y, et al. Studies on buccal delivery of insulin flexible nanoliposomes[J]. Acta Pharm Sin(药学学报), 2002,37(11): 885-891.
[57]
FENG D S, CHEN L K, QUAN G L, et al. Research progresses in microspheres containing protein and peptide drugs for oral delivery[J]. Chin J Pharm (中国医药工业杂志),2016,47(11): 1464-1469.
[58]
LAMPRECHT A, YAMAMOTO H, TAKEUCHI H, et al. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin[J]. J Controlled Release, 2004, 98(1): 1-9.
[59]
GRADAUER K, BARTHELMES J, VONACH C, et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats[J]. J Controlled Release, 2013, 172(3): 872-878.
[60]
MARAIS E, HAMMAN J, PLESSIS L, et al. Eudragit L100/N-trimethylchitosan chloride microspheres for oral insulin delivery[J]. Molecules, 2013, 18(6): 6734-6747.
[61]
ZHANG Y, WEI W, LV P, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2011, 77(1): 11-19.
[62]
QIN SH.Research progress in sustained-release preparation of protein and peptide drugs[J]. Health Med Res Prac (高校保健医学研究与实践), 2006,3(3): 42-43.
[63]
LIU M, YU PC, XU HM.Research progress in long-acting technology for delivering protein and peptide drugs[J]. Prog Pharm Sci(药学进展),2019,43(3):209-216.
[64]
ZHANG C, YANG L, WAN F, et al. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery[J]. Int J Pharm, 2020, 585:119441,Doi:10.1016/j.ijpharm.2020.119441.
[65]
YANG Y, CHEN Q, LIN J, et al. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery[J]. Curr Med Chem, 2019, 26(13):2285-2296.
[66]
QI P, BU R, ZHANG H, et al. Goserelin acetate loaded poloxamer hydrogel in PLGA microspheres: core-shell di-depot intramuscular sustained release delivery system[J]. Mol Pharm, 2019, 16(8):3502-3513.
[67]
ZHAO H, WU F, CAI Y, et al. Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA-PLA core/shell microspheres[J]. Int J Pharm, 2013, 450(1-2): 235-240.
[68]
WANG Z M, LI F Z. Progress in nasal delivery of protein polypeptide drug microspheres[J]. Chin Rem Clin(中国药物与临床),2007,7(10): 737-739.
[69]
WANG J, TABATA Y, MORIMOTO K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats[J]. J Controlled Release, 2006, 113(1): 31-37.
[70]
AGANATHAN K S, VYAS S P. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally[J]. Vaccine, 2006, 24(19): 4201-4211.
[71]
MORIMOTO K, KATSUMATA H, YABUTA T, et al. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin[J]. Eur J Pharm Sci, 2001, 13(2): 179-185.
[72]
VARSHOSAZ J, SADRAI H, ALINAGARI R. Nasal delivery of insulin using chitosan microspheres[J]. J Microencapsul, 2004, 21(7): 761-774.
[73]
JIANG Y, CHEN J, DENG C, et al. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering[J]. Biomaterials, 2014, 35(18): 4969-4985.
[74]
GANGULY K, CHATURVEDI K, MORE UA, et al. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics[J]. J Controlled Release, 2014, 193(5):162-173.
[75]
PARK S H, JI Y B, PARK J Y, et al. Injectable in situ-forming hydrogels for protein and peptide delivery[J]. Adv Exp Med Biol, 2020, 1250(无): 35-48.
[76]
DANG J M, LEONG K W. Natural polymers for gene delivery and tissue engineering[J]. Adv Drug Deliv Rev, 2006, 58(4): 487-499.
[77]
NAMDEY B S, ROSHAN J, CATO T L, et al. Polysaccharide biomaterials for drug delivery and regenerative engineering[J]. Polym Adv Technol, 2014, 25(5): 448-460.
[78]
XU F, CORBETT B, BELL S, et al. High-throughput synthesis, analysis, and optimization of injectable hydrogels for protein delivery[J]. Biomacromolecules, 2020, 21(1): 214-229.
[79]
MATHEW A P, UTHAMAN S, CHO K H, et al. Injectable hydrogels for delivering biotherapeutic molecules[J]. Int J Biol Macromol, 2018, 110(S1): 17-29.
[80]
TIAN J, LI Y N, SHEN Y. Polymer hydrogels designed for protein drugs[J]. J Pharm Res(药学研究),2016,35(2):100-103.
[81]
WANG X, WANG Y, YAN M, et al. Thermosensitive hydrogel based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-poly(2-ethyl-2-oxazoline) for sustained salmon calcitonin delivery[J]. AAPS Pharm Sci Tech, 2020, 21(2):71, Doi:10.1208/s12249-020-1619-1.
[82]
ZHANG Y Y, DU L N, JIN Y G.Application of environmentally sensitive hydrogels in drug delivery[J]. Acta Pharm Sin(药学学报), 2021, 56(5): 1314-1331.
[83]
QI X, WEI W, LI J,et al. Salecan-based pH-sensitive hydrogels for insulin delivery[J]. Mol Pharm, 2017, 14(2): 431-440.