Abstract:Prodrugs are inactive drug molecules, which needs to be chemical or enzymatic bio-transformed in vivo, and to release the therapeutically active parent drug or metabolite. Prodrug design can be used to improve pharmaceutical properties of ophthalmic drug such as poor aqueous solubility, low bioavailability, short half-life and irritation to the eye. Ocular pharmacokinetics is the processes of absorption, distribution, metabolism and elimination of drugs in the eyes. This review aims to discuss pharmacokinetic research progress of ocular prodrug according to their structural modification, and to provide evidences for clinical rational drug use, reducing side effects and improving efficacy.
郭姗姗, 李草, 赵志刚. 眼用制剂的前药及其药动学研究进展[J]. 中国药学杂志, 2022, 57(9): 684-690.
GUO Shan-shan, LI Cao, ZHAO Zhi-gang. Research Progress of Ocular prodrug and Its Pharmacokinetics. Chinese Pharmaceutical Journal, 2022, 57(9): 684-690.
URTTI A. Challenges and obstacles of ocular pharmacokinetics and drug delivery[J]. Adv Drug Deliv Rev, 2006, 58(11): 1131-1135.
[2]
BAROT M, BAGUI M, GOKULGANDHI M R, et al. Prodrug strategies in ocular drug delivery[J]. Med Chem, 2012, 8(4): 753-768.
[3]
SANCHES B, FERREIRA E I. Is prodrug design an approach to increase water solubility?[J]. Int J Pharm, 2019, 568: 118498-118509.
[4]
SEKINE Y, SHIMADA M, SATAKE S, et al. Pharmacokinetic analysis of intraocular penetration of latanoprost solutions with different preservatives in human eyes[J]. J Ocul Pharmacol Ther, 2018, 34(3): 280-286.
[5]
SJOQUIST B, STJERNSCHANTZ J. Ocular and systemic pharmacokinetics of latanoprost in humans[J]. Surv Ophthalmol, 2002, 47(Suppl 1):S6-S12.
[6]
WHITSON J T. Travoprost-a new prostaglandin analogue for the treatment of glaucoma[J]. Expert Opin Pharmacother, 2002, 3(7): 965-977.
[7]
MCCUE B A, CASON M M, CURTIS M A, et al. Determination of travoprost and travoprost free acid in human plasma by electrospray HPLC/MS/MS[J]. J Pharm Biomed Anal, 2002, 28(2): 199-208.
[8]
FUKANO Y, KAWAZU K, AKAISHI T, et al. Metabolism and ocular tissue distribution of an antiglaucoma prostanoid, tafluprost, after ocular instillation to monkeys[J]. J Ocul Pharmacol Ther, 2011, 27(3): 251-259.
[9]
ANDERSON J A, DAVIS W L, WEI C P. Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, epinephrine[J]. Invest Ophthalmol Vis Sci, 1980, 19(7): 817-823.
[10]
ANDERSON J A. Systemic absorption of topical ocularly applied epinephrine and dipivefrin[J]. Arch Ophthalmol, 1980, 98(2): 350-353.
[11]
TIRUCHERAI G S, DIAS C, MITRA A K. Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design[J]. J Ocul Pharmacol Ther, 2002, 18(6): 535-548.
[12]
MACHA S, DUVVURI S, MITRA A K. Ocular disposition of novel lipophilic diester prodrugs of ganciclovir following intravitreal administration using microdialysis[J]. Curr Eye Res, 2004, 28(2): 77-84.
[13]
SMEE D F, MARTIN J C, VERHEYDEN J P, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine[J]. Antimicrob Agents Chemother, 1983, 23(5): 676-682.
[14]
KEARSE E C, GREEN K. Effect of vehicle upon in vitro transcorneal permeability and intracorneal content of Delta9-tetrahydrocannabinol[J]. Curr Eye Res, 2000, 20(6): 496-501.
[15]
HINGORANI T, GUL W, ELSOHLY M, et al. Effect of ion pairing on in vitro transcorneal permeability of a Delta(9)-tetrahydrocannabinol prodrug: potential in glaucoma therapy[J]. J Pharm Sci, 2012, 101(2): 616-626.
[16]
HINGORANI T, ADELLI G R, PUNYAMURTHULA N, et al. Ocular disposition of the hemiglutarateester prodrug of (9)-Tetrahydrocannabinol from various ophthalmic formulations[J]. Pharm Res, 2013, 30(8): 2146-2156.
[17]
LALLEMAND F, FURRER P, FELT-BAEYENS O, et al. A novel water-soluble cyclosporine A prodrug: ocular tolerance and in vivo kinetics[J]. Int J Pharm, 2005, 295(1-2): 7-14.
[18]
RODRIGUEZ-ALLER M, KAUFMANN B, GUILLARME D, et al. In vivo characterisation of a novel water-soluble Cyclosporine A prodrug for the treatment of dry eye disease[J]. Eur J Pharm Biopharm, 2012, 80(3): 544-552.
[19]
WU M, ZHENG Z, ZHOU X. New research progress on the epidemiology of age-related macular degeneration[J]. Int Eye Sci(国际眼科杂志), 2015, 15(2): 223-227.
[20]
CHEN X, ZHANG Y, PENG S, et al. Studies on synthesis and biological activity of novel anti-AMD agent[J]. Chin Pharm J(中国药学杂志), 2006, 41(19):1504-1507.
PALANKI M S, AKIYAMA H, CAMPOCHIARO P, et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1,2,4-benzotria zin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration[J]. J Med Chem, 2008, 51(6): 1546-1559.
[23]
DOUCETTE L P, WALTER M A. Prostaglandins in the eye: Function, expression, and roles in glaucoma[J]. Ophthalmic Genet, 2017, 38(2): 108-116.
[24]
WALTERS T, RAIZMAN M, ERNEST P, et al. In vivo pharmacokinetics and in vitro pharmacodynamics of nepafenac, amfenac, ketorolac, and bromfenac[J]. J Cataract Refract Surg, 2007, 33(9): 1539-1545.
[25]
SHEN J, GOODKIN M L, TONG W, et al. Ocular pharmacokinetics and tolerability of bimatoprost ophthalmic solutions administered once or twice daily in rabbits, and clinical dosing implications[J]. Clin Ophthalmol, 2017, 11: 1761-1767.
[26]
ZIMMERMAN T J. Topical ophthalmic beta blockers: a comparative review[J]. J Ocul Pharmacol, 1993, 9(4): 373-384.
[27]
BODOR N, ELKOUSSI A. Improved delivery through biological membranes. LVI. Pharmacological evaluation of alprenoxime--a new potential antiglaucoma agent[J]. Pharm Res, 1991, 8(11): 1389-1395.
[28]
PROKAI L, WU W M, SOMOGYI G, et al. Ocular delivery of the beta-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analogue[J]. J Med Chem, 1995, 38(11): 2018-2020.
[29]
BODOR N, FARAG H H, SOMOGYI G, et al. Ocular-specific delivery of timolol by sequential bioactivation of its oxime and methoxime analogs[J]. J Ocul Pharmacol Ther, 1997, 13(5): 389-403.
[30]
EL-KOUSSI A A, BODOR N. Formation of propranolol in the iris-ciliary body from its propranolol ketoxime precursor — a potential antiglaucoma drug[J]. Int J Pharm, 1989, 53(3): 189-194.
[31]
FARAG H H, WU W M, BARROS M D, et al. Ocular-specific chemical delivery systems of betaxolol for safe local treatment of glaucoma[J]. Drug Des Discov, 1997, 15(2): 117-130.
[32]
MIAO J, WEI W. Machnisim and treatment of proliferative vitreoretinopathy[J]. Int Rev Ophthalmol(国际眼科纵览), 2013, 37(6): 367-373.
[33]
CHENG L, HOSTETLER K, VALIAEVA N, et al. Intravitreal crystalline drug delivery for intraocular proliferation diseases[J]. Invest Ophthalmol Vis Sci, 2010, 51(1): 474-481.
[34]
PEYMAN G, SCHULMAN J. Proliferative vitreoretinopathy and chemotherapeutic agents[J]. Surv Ophthalmol, 1985, 29(6):434-442.
[35]
KIM J, BEADLE J, FREEMAN W, et al. A novel cytarabine crystalline lipid prodrug: Hexadecyloxypropyl cytarabine 3′,5′-cyclic monophosphate for proliferative vitreoretinopathy[J]. Mol Vis, 2012, 18: 1907-1917.
[36]
ANAND B S, KATRAGADDA S, GUNDA S, et al. In vivo ocular pharmacokinetics of acyclovir dipeptide ester prodrugs by microdialysis in rabbits[J]. Mol Pharm, 2006, 3(4): 431-440.
[37]
DELHIWALA K S, VADAKKAL I P, MULAY K, et al. Retinoblastoma: An update[J]. Semin Diagn Pathol, 2016, 33(3): 133-140.
[38]
ZHANG J, BENAVENTE C A, MCEVOY J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses[J]. Nature, 2012, 481(7381): 329-334.
[39]
PRITCHARD E M, STEWART E, ZHU F, et al. Pharmacokinetics and efficacy of the spleen tyrosine kinase inhibitor r406 after ocular delivery for retinoblastoma[J]. Pharm Res, 2014, 31(11): 3060-3072.
[40]
SWEENY D J, LI W, CLOUGH J, et al. Metabolism of fostamatinib, the oral methylene phosphate prodrug of the spleen tyrosine kinase inhibitor R406 in humans: contribution of hepatic and gut bacterial processes to the overall biotransformation[J]. Drug Metab Dispos, 2010, 38(7): 1166-1176.