Abstract:OBJECTIVE To enrich the chemical constituents of Ardisia crispa(Thunb.) A. DC.. METHODS The 70% ethanol extract of Ardisia crispa (Thunb.) A. DC. was isolated and purified by silica, recrystallization, ODS and preparative / semi-preparative HPLC, and the structures of obtained compounds were identified by physico-chemical properties and spectroscopic data. RESULTS The compounds are bergenin (1), methylbergenin (2), 11-O-galloylbergenin (3), syringin (4), (+)-syringaresinol-O-β-D-glucopyranoside (5), (-)-(7R, 8S, 7′R, 8′S)-4, 9, 4′, 9′-tetrahydroxy-3, 3′-dimethoxy-7, 7′-epoxylignan-9-O-β-D-xylopyranoside (6), saracoside (7), isolariciresinol-4-O-β-D-glucopyranoside (8), (7S, 8R)-urolignoside (9), staphylionoside D (10), grasshopper ketone (11), l-borneol 6-O-β-D-aiosyl-β-D-glucoside (12), (+)-angelicoidenol-2-O-β-D-glucopyranoside (13), vitexin-2″-O-rhamnoside (14), phlorizin (15), phenethyl alcohol-β-D-(2′-O-β-D-glucopyranosyl) glucopyranoside (16), phenylethyl-β-D-glucopyranoside (17), tatarine C (18), caprolactam (19) and sucrose (20). CONCULUSION Compounds 5-19 are firstly isolated from the family Myrsinaceae, compound 4 is isolated from genus Ardisia for the first time and compound 2 and 3 are obtained from this plant for the first time. Compound 6 is the second occurrence ever domestic scholars obtained it from Rhododendron mariae Hance in 2013.
胡瑞航, 殷鑫, 周永强, 雷传文, 朱蔚芊, 周英. 百两金根的化学成分研究[J]. 中国药学杂志, 2022, 57(8): 605-612.
HU Rui-hang, YIN Xin, ZHOU Yong-qiang, LEI Chuan-wen, ZHU Wei-qian, ZHOU Ying. Chemical Constituents from the Roots of Ardisia crispa (Thunb.) A. DC.. Chinese Pharmaceutical Journal, 2022, 57(8): 605-612.
YE L S, DU M, LI R, et al. Overview of pharmacological reasearch on Ardisia crispa (Thunb.) A.DC.[J]. J Anhui Agric Sci(安徽农业科学), 2013,41(18):7754-7755.
[2]
LIU R L. Ardisia crispa (Thunb.)A.DC.var.crispa[J]. J Jiangxi Agric Sci Tech(江西林业科技), 2013, 22(4):42.
[3]
HAMSIN D Z, HAMID R A, YAZAN L S, et al. The hexane fraction of Ardisia crispa(Thunb.) A. DC. roots inhibits inflammation-induced angiogenesis[J]. BMC Complement Med, 2013, 13(1):1-9.
[4]
SOMCHIT M N, ADAM Y, YEE H C, et al. Anti-fungal activity of Ardisia crispa (Thunb.) A.DC. against several fungi responsible for athlete′s foot[J]. Afr J Microbiol Res, 2011, 5 (15):2008-2010.
[5]
HAMID R, TING Y, OTHMAN F, et al. Anti-tumor effect of Ardisia crispa hexane fraction on 7, 12-dimethylbenz[α] anthracene-induced mouse skin papillomagenesis.[J]. J Cancer Res Ther, 2012, 8(3):404-410.
[6]
JINDAL H, MOHAMAD J. Antioxidant activity of Ardisia Crispa (Matapelanduk)[J]. Sains Malays, 2012, 41(5):539-545.
[7]
HUANG W, XU K P, LI F S, et al. A new triterpenoid saponin from the root of Ardisia crispa[J]. Chin J Org Chem(有机化学), 2009,29(10):1564-1568.
[8]
ZHANG N L, HU J M, ZHOU J, et al. Chemical Constituents of Ardisia crispa (Thunb.) A.DC[J]. Nat Prod Res Dev(天然产物研究与开发), 2010,22(4):587-589,593.
[9]
HUANG W. Studies on the antitumor active constituents from the root of Ardisia crispa[D]. Changsha: Central South University, 2006.
[10]
YU K Y, WU W, LI S Z, et al. A new compound, methylbergenin along with eight known compounds with cytotoxicity and anti-inflammatory activity from Ardisia japonica[J]. Nat Prod Res, 2017, 31(22):1-6.
[11]
HAMAYUN K, HAZRAT A, ASAD U, et al. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis[J]. Oxid Med Cell Longev, 2016,2016: 1051925. Doi:10.1155.2016.1051925.
[12]
KIEM P V, MINH C V, Dat N T, et al. Two new phenylpropanoid glycosides from the stem bark of Acanthopanax trifoliatus[J]. Arch Pharm Res, 2004, 26(12):1014-1017.
[13]
WANG C Z, YU D Q. Lignan and acetylenic glycosides from Aster auriculatus[J]. Phytochemistry, 1998, 48(4):711-717.
[14]
GUO Q, LI Y, LIU Y B, et al. Five new compounds from Rhododendron mariae hance[J]. J Asian Nat Prod Res, 2014, 16(1):1-10.
[15]
MUKHERJEE T, CHOWDHURY S, KUMAR A, et al. Saracoside: a new lignan glycoside from Saraca indica, a potential inhibitor of DNA topoisomerase IB.[J]. Nat Prod Commun, 2012, 7(6):767-769.
[16]
FENG W S, LI K K, ZHENG X K. Studies on chemical constituents in Forsythia suspensa (Thunb.) Vahl[J].Chin Pharm J(中国药学杂志), 2009,44(7):490-492.
[17]
KUANG H X, XIA Y G, YANG B Y, et al. Lignan constituents from Chloranthus Japonicus Sieb.[J]. Arch Pharm Res, 2009, 32(3):329-334.
[18]
YU Q, MATSUNAMI K, OTSUKA H, et al. Staphylionosides A—K: Megastigmane Glucosides from the leaves of Staphyleabumalda DC[J]. Chem Pharm Bull, 2005, 53(7):800-807.
[19]
KUANG H X, YANG B Y, XIA Y G, et al. Chemical constituents from the flower of Datura metel L.[J]. Arch Pharm Res, 2008, 31(9):1094-1097.
[20]
KANEDA N, NAKANISHI H, KURAISHI T, et al. Studies on the components of Ophiopogon roots (China). I.[J]. J Pharm Soc Jpn, 1983, 103(11):1133-1139.
[21]
KITAJIMA J, OKAMURA C, ISHIKAWA T, et al. Monoterpenoid glycosides of glehnia littoralis root and rhizoma[J]. Chem Pharm Bull, 1998, 46(10):1595-1598.
[22]
JHOO J W, ANG C Y W, HEINZE T M, et al. Identification of C-glycoside flavonoids as potential mutagenic compounds in Kava[J]. J Food Sci, 2007, 72(2):120-125.
[23]
JIN H X, ZHAO Y, LAI X P, et al. Isolation of chemical constituents of Lithocarpus polystachyus Rehd[J]. Chin Tradit Pat Med(中成药), 2012,34(12):2362-2364.
[24]
SUDO H, IDE T, Otsuka H, et al. Megastigmane, benzyl and phenethyl alcohol glycosides, and 4,4′-dimethoxy-β-truxinic acid catalpol diester from the leaves of Premnasubscandens MERR[J]. Chem Pharm Bull, 2000, 48(4):542-546.
[25]
ZHAO J Q, XIN H L, JIANG Y P, et al. Chemical constituents from leaves of Nitraria tangutorum[J]. Chin Tradit Herb Drugs(中草药), 2016, 47(7):1090-1093.
[26]
LIU Y, YIN X, PAN J, et al. Nitrogenous constituents from the roots of Solanum melongena and their anti-inflammatory activity[J].Chin Tradit Pat Med(中成药), 2021,43(3):660-664.
[27]
WANG J J, WU R, LI J M,et al. Study on chemical constituents of Paraquilegia microphylla[J]. Chin Med Her(中国医药导报), 2016, 13(16):8-10.
[28]
YOSHINARI K, SASHIDA Y, MIMAKI Y, et al. New polyacylated sucrose derivatives from the bark of Prunus padus[J]. Chem Pharm Bull, 1990, 38(2):415-417.
[29]
GAO X J, GUO M Y, ZHANG Z C, et al. Bergenin plays an anti-inflammatory role via the Modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-Induced mastitis[J]. Inflammation, 2014, 38(3):1142-1150.
[30]
ARFAN M, AMIN H, KHAN N, et al. Analgesic and anti-inflammatory activities of 11-O-galloylbergenin[J]. J Ethnopharmacol, 2010, 131(2):502-504.
[31]
SONG Y Y, LI Y, ZHANG H Q. Therapeutic effect of syringin on adJuvant arthritis in rats and its mechanisms[J]. Acta Pharm Sin(药学学报), 2010, 45(8):1006-1011.
[32]
GUO R, LIU Y, PAN J, et al. A new sesquiterpenoid with cytotoxic and anti-inflammatory activity from the leaves of Datura metel L[J]. Nat Prod Res, 2021, 35(4):607-613.
[33]
KIM M J, JEONG S M, KANG B K, et al. Anti-inflammatory effects of grasshopper ketone from Sargassum fulvellum ethanol extract on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.[J]. J Microbiol Biotechnol, 2019, 29(5):820-826.
[34]
SAMPEI M, ARAI M A, ISHIBASHI M. Total syntheses of schizandriside, saracoside and (±)-isolariciresinol with antioxidant activities[J]. J Nat Med, 2018,72(3):651-654.
[35]
KHALIF A M, BAKR A G,OSMAN A T. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats[J]. Biomed Pharmacother, 2017, 95: 529-535.
[36]
SHI X Y, XU M M, LUO K, et al. Anticancer activity of bergenin against cervical cancer cells involves apoptosis, cell cycle arrest, inhibition of cell migration and the STAT3 signalling pathway[J]. Exp Ther Med, 2019, 17(5): 3525-3529.