基于铁死亡调控机制的抗肿瘤药物研究进展

杨英杰, 黄雯瑾, Zoa Bindzi Alexis, 王慧琪, 田原僮

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (3) : 165-169.

PDF(1313 KB)
PDF(1313 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (3) : 165-169. DOI: 10.11669/cpj.2022.03.001
综述

基于铁死亡调控机制的抗肿瘤药物研究进展

  • 杨英杰a, 黄雯瑾b, Zoa Bindzi Alexisc, 王慧琪a, 田原僮a,d*
作者信息 +

Research Progress of Anti-Tumor Drugs Based on the Regulation Mechanism of Ferroptosis

  • YANG Ying-jiea, HUANG Wen-jinb, Zoa Bindzi Alexisc, WANG Hui-qid, TIAN Yuan-tonga,d*
Author information +
文章历史 +

摘要

铁死亡是近年来发现的一种新的程序性细胞死亡方式,以活性氧过度积累和脂质过氧化物堆积为主要特征。尽管目前铁死亡的作用机制尚不明确,但是铁死亡现象引起了研究者的广范关注,现已成为抗肿瘤研究新热点。为了更好地了解铁死亡,本研究对近年发表与铁死亡调控机制和铁死亡诱导剂研究相关的文献进行荟萃,以期为抗肿瘤药物的研发梳理出新思路。

Abstract

As a non-apoptotic programmed cell death, ferroptosis was discovered in recent years. It is characterized by large accumulation of iron-dependent lipid peroxide (LPO) and reactive oxygen species (ROS) inside cells. Although its mechanisms are still not clear, the phenomenon of ferroptosis has attracted widespread attention and become a hot spot in anti-tumor research. In order to better understand ferroptosis and provide new ideas for the development of antitumor drugs,the regulatory mechanisms of ferroptosis and ferroptosis inducers published in recent years were reviewed.

关键词

铁死亡 / 调控机制 / 铁死亡诱导剂 / 肿瘤

Key words

ferroptosis / regulation mechanism / ferroptosis inducer / cancer

引用本文

导出引用
杨英杰, 黄雯瑾, Zoa Bindzi Alexis, 王慧琪, 田原僮. 基于铁死亡调控机制的抗肿瘤药物研究进展[J]. 中国药学杂志, 2022, 57(3): 165-169 https://doi.org/10.11669/cpj.2022.03.001
YANG Ying-jie, HUANG Wen-jin, Zoa Bindzi Alexis, WANG Hui-qi, TIAN Yuan-tong. Research Progress of Anti-Tumor Drugs Based on the Regulation Mechanism of Ferroptosis[J]. Chinese Pharmaceutical Journal, 2022, 57(3): 165-169 https://doi.org/10.11669/cpj.2022.03.001
中图分类号: R963   

参考文献

[1] CONRAD M, ANGELI J P F, VANDENABEELE P, et al. Regulated necrosis: disease relevance and therapeutic opportunities [J]. Nat Rev Drug Discov, 2016, 15(5):348-366.
[2] XIA X, FAN X, ZHAO M, et al. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach [J]. Curr Gene Ther, 2019, 19(2):117-124.
[3] WANG L, LIU Y, DU T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(-) [J]. Cell Death Differ, 2020, 27(2):662-675.
[4] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5):1060-1072.
[5] FRIEDMANN ANGELI J P, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12):1180-1191.
[6] MOU Y, WANG J, WU J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer [J]. J Hematol Oncol, 2019, 12(1):34.
[7] COTTO-RIOS X M, GAVATHIOTIS E. Chemical genetics: unraveling cell death mysteries [J]. Nat Chem Biol, 2016, 12(7):470-471.
[8] DONG T, LIAO D, LIU X, et al. Using small molecules to dissect non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis [J]. Chembiochem, 2015, 16(18):2557-2561.
[9] LI Y, CAO Y, XIAO J, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury [J]. Cell Death Differ, 2020, 27(9): 2635-2650.
[10] ZHOU B, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death [J]. Semin Cancer Biol, 2020, 66: 89-100.
[11] SUN X, OU Z, XIE M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death [J]. Oncogene, 2015, 34(45):5617-5625.
[12] GAO M, MONIAN P, PAN Q, et al. Ferroptosis is an autophagic cell death process [J]. Cell Res, 2016, 26(9):1021-1032.
[13] TONNUS W, LINKERMANN A. "Death is my Heir"--Ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury [J]. Cell Chem Biol, 2016, 23(2):202-203.
[14] MULLER T, DEWITZ C, SCHMITZ J, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure [J]. Cell Mol Life Sci, 2017, 74(19):3631-3645.
[15] TORTI S V, MANZ D H, PAUL B T, et al. Iron and Cancer [J]. Annu Rev Nutr, 2018, 38:97-125.
[16] KAZAN H H, URFALI-MAMATOGLU C, GUNDUZ U. Iron metabolism and drug resistance in cancer [J]. Biometals, 2017, 30(5):629-641.
[17] PROUSEK J. Fenton chemistry in biology and medicine [J]. Pure Appl Chem, 2007, 79(12):2325-2338.
[18] YE Z, LIU W, ZHUO Q, et al. Ferroptosis: Final destination for cancer? [J]. Cell Prolif, 2020, 53(3):e12761.
[19] HASSANNIA B, VANDENABEELE P, BERGHE T V. Targeting ferroptosis to iron out cancer [J]. Cancer Cell, 2019, 35(6):830-849.
[20] LIU J, XIA X, HUANG P. xCT: A critical molecule that links cancer metabolism to redox signaling [J]. Mol Ther, 2020, 28(11):2358-2366.
[21] CONRAD M, SATO H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond [J]. Amino Acids, 2012, 42(1):231-246.
[22] TRAVERSO N, RICCIARELLI R, NITTI M, et al. Role of glutathione in cancer progression and chemoresistance [J]. Oxid Med Cell Longev, 2013, 2013: 972913.
[23] MARTIN H L, TEISMANN P. Glutathione--a review on its role and significance in Parkinson's disease [J]. FASEB J, 2009, 23(10):3263-3272.
[24] DIXON S J, PATEL D N, WELSCH M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis [J]. Elife, 2014, 3: e02523.
[25] XU T, DING W, JI X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy [J]. J Cell Mol Med, 2019, 23(8):4900-4912.
[26] HAYANO M, YANG W S, CORN C K, et al. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation [J]. Cell Death Differ, 2016, 23(2):270-278.
[27] SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication [J]. Free Radic Biol Med, 2019, 133: 144-152.
[28] WINTERBOURN C C. Toxicity of iron and hydrogen peroxide: the Fenton reaction [J]. Toxicol Lett, 1995, 82-83: 969-974.
[29] MINOTTI G, AUST S D. The role of iron in the initiation of lipid peroxidation [J]. Chem Phys Lipids, 1987, 44(2-4):191-208.
[30] SHI Z, ZHANG L, ZHENG J, et al. Ferroptosis: biochemistry and biology in cancers [J]. Front Oncol, 2021, 11: 579286.
[31] GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis [J]. Mol Cell, 2015, 59(2):298-308.
[32] YANG C, KO B, HENSLEY C T, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport [J]. Mol Cell, 2014, 56(3):414-424.
[33] VILLAR V H, MERHI F, DJAVAHERI-MERGNY M, et al. Glutaminolysis and autophagy in cancer [J]. Autophagy, 2015, 11(8):1198-1208.
[34] ZHANG K, WU L, ZHANG P, et al. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma [J]. Mol Carcinog, 2018, 57(11):1566-1576.
[35] HU W, ZHANG C, WU R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function [J]. Proc Natl Acad Sci USA, 2010, 107(16):7455-7460.
[36] GAO M, YI J, ZHU J, et al. Role of mitochondria in ferroptosis [J]. Mol Cell, 2019, 73(2):354-363.
[37] BIEGING K T, MELLO S S, ATTARDI L D. Unravelling mechanisms of p53-mediated tumour suppression [J]. Nat Rev Cancer, 2014, 14(5):359-370.
[38] KAISER A M, ATTARDI L D. Deconstructing networks of p53-mediated tumor suppression in vivo [J]. Cell Death Differ, 2018, 25(1):93-103.
[39] KRUISWIJK F, LABUSCHAGNE C F, VOUSDEN K H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill [J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405.
[40] WANG S J, LI D, OU Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression [J]. Cell Rep, 2016, 17(2):366-373.
[41] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression [J]. Nature, 2015, 520(7545):57-62.
[42] OU Y, WANG S J, LI D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses [J]. Proc Natl Acad Sci USA, 2016, 113(44):E6806-E6812.
[43] HASSANNIA B, VANDENABEELE P, BERGHE T V. Targeting ferroptosis to iron out cancer [J]. Cancer Cell, 2019, 35(6):830-849.
[44] ZHANG Y, SHI J, LIU X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression [J]. Nat Cell Biol, 2018, 20(10):1181-1192.
[45] LU B, XIAO B C, MEI D Y, et al. The role of ferroptosis in cancer development and treatment response [J]. Front Pharm, 2018, 8: 992.
[46] FENG H, STOCKWELL B R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? [J]. PLoS Biol, 2018, 16(5):e2006203.
[47] SUN J, WEI Q, ZHOU Y, et al. A systematic analysis of FDA-approved anticancer drugs [J]. BMC Syst Biol, 2017, 11(5):1-17.
[48] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell, 2014, 156(1-2):317-331.
[49] GASCHLER M M, HU F, FENG H, et al. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis [J]. ACS Chem Biol, 2018, 13(4):1013-1020.
[50] LIANG C, ZHANG X, YANG M, et al. Recent progress in ferroptosis inducers for cancer therapy [J]. Adv Mater, 2019, 31(51):e1904197.
[51] ELING N, REUTER L, HAZIN J, et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells [J]. Oncoscience, 2015, 2(5):517-532.
[52] BASULI D, TESFAY L, DENG Z, et al. Iron addiction: a novel therapeutic target in ovarian cancer [J]. Oncogene, 2017, 36(29):4089-4099.
[53] VISWANATHAN V S, RYAN M J, DHRUV H D, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway [J]. Nature, 2017, 547(7664):453-457.
[54] MA S, HENSON E S, CHEN Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells [J]. Cell Death Dis, 2016, 7(7): e2307.
[55] GUO J, XU B, HAN Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin [J]. Cancer Res Treat, 2018, 50(2):445-460.
[56] BUCCARELLI M, MARCONI M, PACIONI S, et al. Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis [J]. Cell Death Dis, 2018, 9(8):841.
[57] LACHAIER E, LOUANDRE C, GODIN C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors [J]. Anticancer Res, 2014, 34(11):6417-6422.
[58] WOO J H, SHIMONI Y, YANG W S, et al. Elucidating compound mechanism of action by network perturbation analysis [J]. Cell, 2015, 162(2):441-451.
[59] ZHENG D W, LEI Q, ZHU J Y, et al. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy [J]. Nano Lett, 2017, 17(1):284-291.
[60] HUANG K J, WEI Y H, CHIU Y C, et al. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells [J]. Biomater Sci, 2019, 7(4):1311-1322.

基金

国家自然科学基金地区科学基金项目资助(81560422);江西省教育厅科学技术重点项目资助(GJJ190787);赣南医学院创新团队项目资助(TD201703);江西省教育厅重点项目资助(20200455);赣南医学院研究生创新资金项目资助(YC2020-X006)
PDF(1313 KB)

Accesses

Citation

Detail

段落导航
相关文章

/