渗透泵药物控释制剂包衣工艺研究进展

陈馨怡, 袁凤, 史楷岐, 杨根生, 杨庆良

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (23) : 1874-1879.

PDF(1694 KB)
PDF(1694 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (23) : 1874-1879. DOI: 10.11669/cpj.2021.23.002
综述

渗透泵药物控释制剂包衣工艺研究进展

  • 陈馨怡1, 袁凤1, 史楷岐2, 杨根生1, 杨庆良1*
作者信息 +

Recent Advances of Film Coating for Osmotic Drug Delivery Systems

  • CHEN Xin-yi1, YUAN Feng1, SHI Kai-qi2, YANG Gen-sheng1, YANG Qing-liang1*
Author information +
文章历史 +

摘要

渗透泵控释制剂是一种可实现药物匀速释放的膜控型控释制剂,精准的药物控释能力使其成为高端药物制剂领域的研究热点。当前,越来越多的普通口服制剂通过改良型药物申报渠道(505b2)得到了美国食品药品监督管理局(FDA)的批准,成为新型渗透泵控释制剂,大幅减少了服药频次,降低或消除了血药浓度峰谷波动引起的毒副作用。渗透泵控释制剂实现药物匀速释放的关键是其包衣膜(半透膜)质量,目前产业化渗透泵制剂大多利用有机溶剂包衣工艺制备包衣膜,但有机溶剂易燃、易爆及挥发性有机化合物(VOC)排放等问题促使科研人员开发替代型包衣工艺,包括水分散体包衣、热塑包衣、静电干粉包衣及3D打印技术等。笔者总结新型包衣工艺的最新研究进展,探讨每一种包衣工艺的优缺点及其产业化过程需要解决的关键问题,并展望渗透泵控释制剂包衣工艺的应用前景,为其在制药领域的研究和应用提供参考。

Abstract

As one of the oral drug delivery system capable achieving constant drug release rate, osmotic pump is considered as the ultimate ideal drug delivery system. Compared with traditional oral preparation, osmotic pump could precisely control the drug release rate over a prolonged time period, significantly reducing the frequency of drug administrations and eliminating side effects caused by the fluctuation of drug plasma concentration. This review aims to summarize and discuss the newly developed manufacturing methods of the crucial coating film (semipermeable membrane) of the osmotic pump, focusing on the advantages and limitations of each fabricating method. The review also provides future perspectives of the promising applications of each manufacturing procedure for the osmotic pump.

关键词

渗透泵 / 控释制剂 / 包衣工艺 / 半透膜 / 零级释放

Key words

osmotic pump / controlled-release preparation / coating method / semipermeable membrane / zero order release.

引用本文

导出引用
陈馨怡, 袁凤, 史楷岐, 杨根生, 杨庆良. 渗透泵药物控释制剂包衣工艺研究进展[J]. 中国药学杂志, 2021, 56(23): 1874-1879 https://doi.org/10.11669/cpj.2021.23.002
CHEN Xin-yi, YUAN Feng, SHI Kai-qi, YANG Gen-sheng, YANG Qing-liang. Recent Advances of Film Coating for Osmotic Drug Delivery Systems[J]. Chinese Pharmaceutical Journal, 2021, 56(23): 1874-1879 https://doi.org/10.11669/cpj.2021.23.002
中图分类号: R944   

参考文献

[1] MALATERRE V, OGORKA J, LOGGIA N, et al. Oral osmotically driven systems: 30 years of development and clinical use. Eur J Pharm Biopharm, 2009, 73(3):311-323.
[2] THEEUWES F. Elementary osmotic pump. J Pharm Sci, 1975, 64(12):1987-1991.
[3] MAKHIJA S N, VAVIA P R. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine - I. Cellulose acetate as a semipermeable membrane. J Controlled Release, 2003, 89(1):5-18.
[4] LIU X H, WANG S, CHAI L Q, et al. two-step strategy to design high bioavailable controlled-release nimodipine tablets: The push-pull osmotic pump in combination with the micronization/solid dispersion techniques. Int J Pharm, 2014, 461(1-2):529-539.
[5] HERRLICH S, SPIETH S, MESSNER S, et al. Osmotic micropumps for drug delivery. Adv Drug Deliv Rev, 2012, 64(14):1617-1627.
[6] FELTON L A. Mechanisms of polymeric film formation. Int J Pharm, 2013, 457(2):423-427.
[7] LI Y N, PAN H, DUAN H L, et al. Double-layered osmotic pump controlled release tablets of actarit: In vitro and in vivo evaluation. Asian J Pharm Sci, 2019, 14(3):340-348.
[8] SUN Y L, ZHU S S, LU W J, et al. A novel enteric positioning osmotic pump capsule-based controlled release system of sinomenine hydrochloride: In vitro and in vivo evaluation. J Drug Deliv Sci Technol, 2019,49:188-194.
[9] WU C, ZHAO Z Z, ZHAO Y, et al. Preparation of a push-pull osmotic pump of felodipine solubilized by mesoporous silica nanoparticles with a core-shell structure. Int J Pharm, 2014, 475(1-2):298-305.
[10] BAHARIA L A, JAVADZADEH Y, JALALI M B, et al. Nano-suspension coating as a technique to modulate the drug release from controlled porosity osmotic pumps for a soluble agent. Colloid Surf B, 2017, 153:27-33.
[11] SIEPMANN J, SIEPMANN F. Stability of aqueous polymeric controlled release film coatings. Int J Pharm, 2013, 457(2):437-445.
[12] ZHANG F Y, WU T, PAN W S, et al. The Preparation of Salbutamol Sulfate Controlled Release Tablets Coated with Cellulose Acetate Aqueous Dispersion. J Chin Pharm Sci(中国药学英文版), 2001, 10(2):85-89.
[13] JU C Y, LI X, CUI T Z, et al. Preparation and properties of aqueous cellulose acetate dispersion. Chin New Drug J(中国新药杂志), 2006, 15(19):1668-1671.
[14] CHENG L Z, GAI X M, WEN H Y, et al. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation. AAPS Pharm Sci Tech, 2018, 19(1):242-250.
[15] KAN S L, LI J, LIU J P, et al. Preparation and IVIVC evaluation of salvianolic acid B micro-porous osmotic pump pellets. Drug Dev Ind Pharm, 2015, 41(3):476-481.
[16] FOPPOLI A A, MARONI A, CEREA M, et al. Dry coating of solid dosage forms: an overview of processes and applications. Drug Dev Ind Pharm, 2017, 43(12):1919-1931.
[17] MIAO Y F, CHEN G G, REN L L, et al. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability. Pharm Dev Technol, 2017, 22(2):148-155.
[18] XIN T G, ZHAO Y, JING H P, et al. A time-released osmotic pump fabricated by compression-coated method: Formulation screen, mechanism research and pharmacokinetic study. Asian J Pharm Sci, 2014, 9(4):208-217.
[19] YUAN C P, HOU H M, QIAN M Y, et al. A New Thermoplastic Coating for Osmotic Pump TabletsⅠ. Development of Preparation Process. Chin J Pharm(中国医药工业杂志), 2019, 50(1):48-58.
[20] YUAN C P, HOU H M, OU S Y, et al. A New Thermoplastic Coating for Osmotic Pump Tablets Ⅱ. Evaluation of the Coating Membrane. Chin J Pharm(中国医药工业杂志), 2019, 50(2):165-172.
[21] YUAN F, YANG Q L, YANG Y, et al. Electrostatic Dry Powder Coating for Pharmaceutical Solid Dosage Forms. Chin Pharm J(中国药学杂志), 2018, 53(20):1709-1713.
[22] YANG Y, SHEN L, YUAN F, et al. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference. Int J Pharm, 2018, 543(1-2):345-351.
[23] YANG Q L, MA Y L, ZHU J. Sustained drug release from electrostatic powder coated tablets with ultrafine ethylcellulose powders. Adv Powder Technol, 2016, 27(5):2145-2152.
[24] YANG Q L, YUAN F, XU L, et al. An Update of Moisture Barrier Coating for Drug Delivery. Pharmaceutics, 2019, 11(9):436-452.
[25] YANG Q L, MA Y L, SHI K Q, et al. Electrostatic coated controlled porosity osmotic pump with ultrafine powders. Powder Technol, 2018, 333:71-77.
[26] YANG Q L, MA Y L, ZHU J. Dry powder coated osmotic drug delivery system. Eur J Pharm Sci, 2018, 111:383-392.
[27] YANG Q L, YUAN F, MA Y L, et al. Electrostatic powder coated osmotic pump tablets: Influence factors of coating powder adhesion and film formation. Powder Technol, 2020, 360:444-451.
[28] NORMAN J, MADURAWE R D, MOORE CMV, et al. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev, 2017, 108:39-50.
[29] LIM S H, KATHURIA H, TAN JJY, et al. 3D printed drug delivery and testing systems-a passing fad or the future. Adv Drug Deliv Rev, 2018, 132:139-168.
[30] GIOUMOUXOUZIS C I, KARAVASILI C, FATOUROS D G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today, 2019, 24(2):636-643.
[31] GIOUMOUXOUZIS C I, TZIMTZIMIS E, KATSAMENIS O L, et al. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci, 2020,143:105176.
[32] CHAKIB H Y, ABHISHEK S, GUY V. Drug loaded and ethylcellulose coated mesoporous silica for controlled drug release prepared using a pilot scale fluid bed system. Int J Pharm, 2016, 501(1-2):138-147.
[33] JU C Y. Studies On Coating Technique Of Aqueous Cellulose Acetate Dispersion Used In Osmotic Pump Tablets. Shenyang: Shenyang Pharmaceutical University, 2006.
[34] LI X D, PAN W S, NIE S F, et al. Studies on controlled release effervescent osmotic pump tablets from Traditional Chinese Medicine Compound Recipe. J Controlled Release, 2004, 96(3):359-367.
[35] Ye W Q, Zhang Z H, Chen T M, et al. Formula Optimization of Captopril Timing Osmotic Pump Tablets. J China Pharm(中国药房), 2018, 29(10):1328-1332.
[36] LIN B Q, CAO B C, ZHANG X M, et al. Application of Central Composite Design-response Surface Methodology to Optimize the Formulation of Glipizide Extended Release Osmotic Pump Tablets. Chin Pharm J (中国药学杂志), 2014, 49(9):753-758.
[37] PAN H, JING H P, YANG X G, et al. Synchronized and controlled release of metformin hydrochloride/glipizide from elementary osmotic delivery. Drug Dev Ind Pharm, 2017, 43(5):780-788.
[38] LI G J, WANG Y J, CHEN H M, et al. Can semipermeable membranes coating materials influence in vivo performance for paliperidone tri-layer ascending release osmotic pump tablet: In vitro evaluation and in vivo pharmacokinetics study. Asian J Pharm Sci, 2015, 10(2):128-137.
[39] CHEN X, ZHOU M. Preparation of Curcumin Self-microemulsifying Osmotic Pump Control ed-release Tablet. Food Ind(食品工业), 2018, 39(10):95-98.
[40] WU X C, HAO H J, SONG X Y, et al. Preparation and Synchronized Release Behavior on Porosity Osmotic Pump Tablets of Total Glucosides of Paeony. J Chin Med Mater (中药材), 2016, 390(02):363-366.
[41] LI J, YANG X G, JING H P, et al. Optimization of bi-layer osmotic pump controlled release tablets of total flavonoids from Ginkgo Folium by central composite design-response surface methodology. Chin Tradit Herb Drugs (中草药), 2014, 45(12):1702-1708.

基金

国家自然科学基金项目资助(21808206);宁波市国际合作项目资助(2018D10011);宁波市科技项目资助(2019C10080)
PDF(1694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/