基于原位疫苗的联合疗法在肿瘤治疗中的研究进展

韩露, 袁志翔, 郭坤, 何黎黎

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (19) : 1537-1545.

PDF(1760 KB)
PDF(1760 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (19) : 1537-1545. DOI: 10.11669/cpj.2021.19.001
综述

基于原位疫苗的联合疗法在肿瘤治疗中的研究进展

  • 韩露, 袁志翔, 郭坤, 何黎黎*
作者信息 +

Recent Advances of In Situ Vaccine-Based Combination Therapies in the Treatment of Cancer

  • HAN Lu, YUAN Zhi-xiang, GUO Kun, HE Li-li*
Author information +
文章历史 +

摘要

原位疫苗利用体内肿瘤作为抗原来源,只需递送佐剂便可激活抗肿瘤免疫应答。由于单一的治疗方式难以克服肿瘤的复杂性和代偿性进化,研究者们将促进肿瘤细胞免疫原性死亡的治疗方法与免疫佐剂相结合以制备原位疫苗,不仅能直接杀死肿瘤细胞以控制局部肿瘤,还能诱导强烈的全身性抗肿瘤免疫应答而避免肿瘤的复发和转移。笔者对近年来基于原位疫苗的抗肿瘤联合治疗策略的研究进展进行总结,主要包括化疗联合免疫治疗、放疗联合免疫治疗、光疗联合免疫治疗和溶瘤病毒联合免疫治疗。揭示这些联合疗法的应用潜力和挑战,为今后原位疫苗的设计提供指导和参考。

Abstract

Taking advantage of the tumor itself as an antigen resource, in situ vaccines can activate antitumor immune responses by simply delivering adjuvants. However, a single therapy is difficult to overcome the complexity and compensatory evolution of tumors. Therefore, researchers combine the therapies inducing immunogenic tumor cell death with immunoadjuvants to prepare in situ vaccines, which can not only directly kill tumor cells to control local tumors, but also evoke strong systemic antitumor immune responses to avoid tumor recurrence and metastasis. Herein, in this review, the recent advances of in situ vaccine-based combination therapies will be highlighted, including chemotherapy combined with immunotherapy, radiotherapy combined with immunotherapy, phototherapy combined with immunotherapy, and oncolytic virotherapy combined with immunotherapy. The application potential and challenges of these combination therapies will be revealed to provide guidance and references for developing in situ vaccines.

关键词

原位疫苗 / 肿瘤 / 联合治疗 / 免疫原性细胞死亡 / 免疫治疗

Key words

in situ vaccine / tumor / combination therapy / immunogenic cell death / immunotherapy

引用本文

导出引用
韩露, 袁志翔, 郭坤, 何黎黎. 基于原位疫苗的联合疗法在肿瘤治疗中的研究进展[J]. 中国药学杂志, 2021, 56(19): 1537-1545 https://doi.org/10.11669/cpj.2021.19.001
HAN Lu, YUAN Zhi-xiang, GUO Kun, HE Li-li. Recent Advances of In Situ Vaccine-Based Combination Therapies in the Treatment of Cancer[J]. Chinese Pharmaceutical Journal, 2021, 56(19): 1537-1545 https://doi.org/10.11669/cpj.2021.19.001
中图分类号: R944    R969   

参考文献

[1] UPADHYAY R, HAMMERICH L, PENG P, et al. Lymphoma:immune evasion strategies [J]. Cancers (Basel), 2015, 7(2):736-762.
[2] GALLUZZI L, CHAN T A, KROEMER G, et al. The hallmarks of successful anticancer immunotherapy [J]. Sci Transl Med, 2018, 10(459):eaat7807. doi: 10.1126/scitranslmed.aat7807.
[3] SONG C, PHUENGKHAM H, KIM Y S, et al. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence [J]. Nat Commun, 2019, 10(1):37-45.
[4] CHEN Q, XU L, LIANG C, et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy [J]. Nat Commun, 2016, 7:13193. doi: 10.1038/ncomms13193.
[5] LU J, LIU X, LIAO Y P, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression [J]. Nat Commun, 2017, 8(1):1811. doi: 10.1038/s41467-017-01651-9.
[6] ONDA M, KOBAYASHI K, PASTAN I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity [J]. Proc Natl Acad Sci, 2019, 116(10):4575-4582.
[7] RUSSELL S J, BARBER G N. Oncolytic viruses as antigen-agnostic cancer vaccines [J]. Cancer Cell, 2018, 33(4):599-605.
[8] NAKAO S, ARAI Y, TASAKI M, et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade [J]. Sci Transl Med, 2020, 12(526):eaax7992. doi: 10.1126/scitranslmed.aax7992.
[9] MULLINS S R, VASILAKOS J P, DESCHLER K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies [J]. J Immunother Cancer, 2019, 7(1):244-261.
[10] REILLEY M J, MORROW B, AGER C R, et al. TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma [J]. J Immunother Cancer, 2019, 7(1):323. doi: 10.1186/s40425-019-0811-x.
[11] WANG C, YE Y, HOCHU G M, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody [J]. Nano Lett, 2016, 16(4):2334-2340.
[12] KNORR D A, DAHAN R, RAVETCH J V. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity [J]. Proc Natl Acad Sci, 2018, 115(43):11048-11053.
[13] JACKAMAN C, NELSON D J. Intratumoral interleukin-2/agonist CD40 antibody drives CD4+-independent resolution of treated-tumors and CD4+-dependent systemic and memory responses [J]. Cancer Immunol Immunother, 2012, 61(4):549-560.
[14] SUBBIAH V, MURTHY R, HONG D S, et al. Cytokines produced by dendritic cells administered intratumorally correlate with clinical outcome in patients with diverse cancers [J]. Clin Cancer Res, 2018, 24(16):3845-3856.
[15] PITUCH K C, MISKA J, KRENCIUTE G, et al. Adoptive transfer of IL13Ralpha2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblast [J]. Mol Ther, 2018, 26(4):986-995.
[16] GALLUZZI L, BUQUE A, KEPP O, et al. Immunogenic cell death in cancer and infectious disease [J]. Nat Rev Immunol, 2017, 17(2):97-111.
[17] RODRIGUEZ-RUIZ M E, VANPOUILLE-BOX C, MELERO I, et al. Immunological mechanisms responsible for radiation-induced abscopal effect [J]. Trends Immunol, 2018, 39(8):644-655.
[18] LI H, YU J, WU Y, et al. In situ antitumor vaccination:Targeting the tumor microenvironment [J]. J Cell Physiol, 2020, 235(7-8):5490-5500.
[19] HAMMERICH L, BINDER A, BRODY J D. In situ vaccination:Cancer immunotherapy both personalized and off-the-shelf [J]. Mol Oncol, 2015, 9(10):1966-1981.
[20] POL J, VACCHELLI E, ARANDA F, et al. Trial Watch:Immunogenic cell death inducers for anticancer chemotherapy [J]. Oncoimmunology, 2015, 4(4):e1008866. doi: 10.1080/2162402X.2015.1008866.
[21] TAHA M S, CRESSWELL G M, PARK J, et al. Sustained delivery of carfilzomib by tannic acid-based nanocapsules helps develop antitumor immunity [J]. Nano Lett, 2019, 19(11):8333-8341.
[22] CHEN G, EMENS L A. Chemoimmunotherapy:reengineering tumor immunity [J]. Cancer Immunol Immunother, 2013, 62(2):203-216.
[23] SETH A, HEO M B, LIM Y T. Poly (gamma-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy [J]. Biomaterials, 2014, 35(27):7992-8001.
[24] ZHANG L, JING D, WANG L, et al. Unique photochemo-immuno-nanoplatform against orthotopic xenograft oral cancer and metastatic syngeneic breast cancer [J]. Nano Lett, 2018, 18(11):7092-7103.
[25] SCHMID P, ADAMS S, RUGO H S, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer [J]. N Engl J Med, 2018, 379(22):2108-2121.
[26] SILVA C G, CAMPS M G, LI T M, et al. Effective chemoimmunotherapy by co-delivery of doxorubicin and immune adjuvants in biodegradable nanoparticles [J]. Theranostics, 2019, 9(22):6485-6500.
[27] SHEEN M R, FIERING S. In situ vaccination: harvesting low hanging fruit on the cancer immunotherapy tree [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(1):e1524. doi: 10.1002/wnan.1524.
[28] LEE K L, MURRAY A A, LE D H T, et al. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response [J]. Nano Lett, 2017, 17(7):4019-4028.
[29] LYNN G M, LAGA R, JEWELL C M. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines [J]. Cancer Lett, 2019, 459:192-203.
[30] SONG W, SHEN L, WANG Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap [J]. Nat Commun, 2018, 9(1):2237. doi: 10.1038/s41467-018-04605-x.
[31] RUOSLAHTI E. Tumor penetrating peptides for improved drug delivery [J]. Adv Drug Deliv Rev, 2017, 110-111:3-12.
[32] OU W, JIANG L, THAPA R K, et al. Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy [J]. Theranostics, 2018, 8(17):4574-4590.
[33] LU J, LIU X, LIAO Y P, et al. Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway [J]. ACS Nano, 2018, 12(11):11041-11061.
[34] WANG X, LI M, REN K, et al. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy [J]. Adv Mater, 2020, 32(32):e2002160. doi: 10.1002/adma.202002160.
[35] WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours [J]. Nat Rev Mater, 2016, 1:1-12.
[36] MOHAMMADPOUR R, CHENEY D L, GRUNBERGER J W, et al. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility [J]. J Controlled Release, 2020, 324:471-481.
[37] DANHIER F. To exploit the tumor microenvironment:Since the EPR effect fails in the clinic, what is the future of nanomedicine? [J]. J Controlled Release, 2016, 244(Pt A):108-121.
[38] SINDHWANI S, SYED A M, NGAI J, et al. The entry of nanoparticles into solid tumours [J]. Nat Mater, 2020, 19(5):566-575.
[39] LI M, YANG Y T, HE Q, et al. Recent advances of nanocarriers in tumor immunotherapy [J]. Acta Pharm Sin (药学学报), 2017, 52(12):1839-1848.
[40] YU W D, SUN G, LI J, et al. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy [J]. Cancer Lett, 2019, 452:66-70.
[41] GORBET M J, RANJAN A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors:Recent progress and challenges in treatment and tracking response to immunotherapy [J]. Pharmacol Ther, 2020, 207:107456. doi: 10.1016/j.pharmthera.2019.107456.
[42] GOTO T. Radiation as an in situ auto-vaccination:current perspectives and challenges [J]. Vaccines (Basel), 2019, 7(3):100. doi: 10.3390/vaccines7030100.
[43] YOKOUCHI H, YAMAZAKI K, CHAMOTO K, et al. Anti-OX40 monoclonal antibody therapy in combination with radiotherapy results in therapeutic antitumor immunity to murine lung cancer [J]. Cancer Sci, 2008, 99(2):361-367.
[44] MINN I, ROWE S P, POMPER M G. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy [J]. Lancet Oncol, 2019, 20(8):e443-e451.
[45] MIN Y, ROCHE K C, TIAN S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy [J]. Nat Nanotechnol, 2017, 12(9):877-882.
[46] PATEL R B, YE M, CARLSON P M, et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles [J]. Adv Mater, 2019, 31(43):e1902626. doi: 10.1002/adma.201902626.
[47] BROWN J M, WILSON W R. Exploiting tumour hypoxia in cancer treatment [J]. Nat Rev Cancer, 2004, 4(6):437-447.
[48] CHEN Q, CHEN J, YANG Z, et al. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy [J]. Adv Mater, 2019, 31(10):e1802228. doi: 10.1002/adma.201802228.
[49] CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity [J]. Nat Rev Cancer, 2006, 6(7):535-545.
[50] KHOT M I, ANDREW H, SVAVARSDOTTIR H S, et al. A Review on the scope of photothermal therapy-based nanomedicines in preclinical models of colorectal cancer [J]. Clin Colorectal Cancer, 2019, 18(2):e200-e209.
[51] CHEN P M, PAN W Y, WU C Y, et al. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination [J]. Biomaterials, 2020, 230:119629. doi: 10.1016/j.biomaterials.2019.119629.
[52] PENG J, XIAO Y, LI W, et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy [J]. Adv Sci, 2018, 5(5):1700891. doi: 10.1002/advs.201700891.
[53] ZHOU B, SONG J, WANG M, et al. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy [J]. Nanoscale, 2018, 10(46):21640-21647.
[54] WANG R, HE Z, CAI P, et al. Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing [J]. ACS Appl Mater Interfaces, 2019, 11(15):13964-13972.
[55] WANG T, WANG D, YU H, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors [J]. Nat Commun, 2018, 9(1):1532. doi: 10.1038/s41467-018-03915-4.
[56] HAN Y, CHEN Z, ZHAO H, et al. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles [J]. J Controlled Release, 2018, 284:15-25.
[57] NAM J, SON S, OCHYL L J, et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer [J]. Nat Commun, 2018, 9(1):1074. doi: 10.1038/s41467-018-03473-9.
[58] KWIATKOWSKI S, KNAP B, PRZYSTUPSKI D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations [J]. Biomed Pharmacother, 2018, 106:1098-1107.
[59] ZHU Y, XUE J, CHEN W, et al. Albumin-biomineralized nanoparticles to synergize phototherapy and immunotherapy against melanoma [J]. J Controlled Release, 2020, 322:300-311.
[60] CHEN S X, MA M, XUE F, et al. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy [J]. J Controlled Release, 2020, 324:218-227.
[61] FENG B, HOU B, XU Z, et al. Self-amplified drug delivery with light-inducible nanocargoes to enhance cancer immunotherapy [J]. Adv Mater, 2019, 31(40):e1902960. doi: 10.1002/adma.201902960.
[62] KIM J, CHO H R, JEON H, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer [J]. J Am Chem Soc, 2017, 139(32):10992-10995.
[63] JAIN R K. Antiangiogenesis strategies revisited:from starving tumors to alleviating hypoxia [J]. Cancer Cell, 2014, 26(5):605-622.
[64] LUO Z, ZHENG M, ZHAO P, et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy [J]. Sci Rep, 2016, 6:23393. doi: 10.1038/srep23393.
[65] ZHOU T J, XING L, FAN Y T, et al. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy [J]. J Controlled Release, 2019, 307:44-54.
[66] AGOSTINIS P, BERG K, CENGEL K A, et al. Photodynamic therapy of cancer:an update [J]. CA Cancer J Clin, 2011, 61(4):250-281.
[67] WANG M, SONG J, ZHOU F, et al. NIR-triggered phototherapy and immunotherapy via an antigen-capturing nanoplatform for metastatic cancer treatment [J]. Adv Sci, 2019, 6(10):1802157. doi: 10.1002/advs.201802157.
[68] TWUMASI-BOATENG K, PETTIGREW J L, KWOK Y Y E, et al. Oncolytic viruses as engineering platforms for combination immunotherapy [J]. Nat Rev Cancer, 2018, 18(7):419-432.
[69] LAWLER S E, SPERANZA M C, CHO C F, et al. Oncolytic viruses in cancer treatment:A review [J]. JAMA Oncol, 2017, 3(6):841-849.
[70] REHMAN H, SILK A W, KANE M P, et al. Into the clinic:Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy [J]. J Immunother Cancer, 2016, 4:53. doi: 10.1186/s40425-016-0158-5.
[71] ENGELAND C E, GROSSARDT C, VEINALDE R, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy [J]. Mol Ther, 2014, 22(11):1949-1959.
[72] TÄHTINEN S, GRÖNBERG-VÖHÄ-KOSKELA S, LUMEN D, et al. Adenovirus improves the efficacy of adoptive T-cell therapy by recruiting immune cells to and promoting their activity at the tumor [J]. Cancer Immunol Res, 2015, 3(8):915-925.
[73] YAKKALA C, CHIANG C L, KANDALAFT L, et al. Cryoablation and immunotherapy:an enthralling synergy to confront the tumors [J]. Front Immunol, 2019, 10:2283. doi: 10.3389/fimmu.2019.02283.
[74] ZHAO H, ZHAO B, LI L, et al. Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy [J]. Adv Healthc Mater, 2020, 9(1):e1901335. doi: 10.1002/adhm.201901335.
[75] TREMBLE L F, O′BRIEN M A, SODEN D M, et al. Electrochemotherapy with cisplatin increases survival and induces immunogenic responses in murine models of lung cancer and colorectal cancer [J]. Cancer Lett, 2019, 442:475-482.
[76] NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria [J]. Science, 2020, 368(6494):937-980.

基金

国家自然科学基金项目资助(82003683);西南民族大学中央高校基本科研业务费专项资金项目资助(校2021105)
PDF(1760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/