活化肝星状细胞生物标志物与靶向递送系统研究进展

郝玉梅, 谢安, 李鹤, 谭晓川, 文瑾, 靳雯臻, 张宇佳, 郑稳生

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (7) : 517-525.

PDF(1268 KB)
PDF(1268 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (7) : 517-525. DOI: 10.11669/cpj.2021.07.001
综述

活化肝星状细胞生物标志物与靶向递送系统研究进展

  • 郝玉梅1, 谢安1, 李鹤1, 谭晓川1, 文瑾2, 靳雯臻1, 张宇佳1*, 郑稳生1*
作者信息 +

Progress in Targeted Delivery Systems for Hepatic Stellate Cell Biomarkers

  • HAO Yu-mei1, XIE An1, LI He1, TAN Xiao-chuan1, WEN Jin2, JIN Wen-zhen1, ZHANG Yu-jia1*, ZHENG Wen-sheng1*
Author information +
文章历史 +

摘要

肝星状细胞(hepatic stellate cells, HSCs)激活并转化为肌成纤维细胞是肝纤维化发生的中心环节,抑制HSCs活化是阻断肝纤维化进展的有效手段。复杂的肝纤维化微环境阻碍了传统制剂向HSCs的有效递送,亟需开发靶向递送系统实现精准递药,寻找活化的HSCs表面丰富表达的生物标志物是肝纤维化靶向药物治疗的关键。笔者对HSCs表面过表达的生物标志物及其靶向递送系统的研究进展进行综述。

Abstract

The vital events in liver fibrogenesis are the activation and transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts (MFBs). Inhibition of HSCs activation is an effective means to block the progression of liver fibrosis. However, the complex microenvironment of liver fibrosis hinders the effective delivery of conventional preparations to HSCs. It is urgent to develop a targeted drug delivery system to precisely delivery drug to HSCs. Finding biomarkers abundant expressing on activated HSCs is the key to suppress liver fibrosis. In this paper, biomarkers high-expressed on activated HSCs and the research development of the targeted drug delivery systems(DDS) of their ligands are summarized.

关键词

肝星状细胞 / 肝纤维化 / 生物标志物 / 靶向递送系统

Key words

hepatic stellate cell / liver fibrosis / biomarker / targeted drug delivery system

引用本文

导出引用
郝玉梅, 谢安, 李鹤, 谭晓川, 文瑾, 靳雯臻, 张宇佳, 郑稳生. 活化肝星状细胞生物标志物与靶向递送系统研究进展[J]. 中国药学杂志, 2021, 56(7): 517-525 https://doi.org/10.11669/cpj.2021.07.001
HAO Yu-mei, XIE An, LI He, TAN Xiao-chuan, WEN Jin, JIN Wen-zhen, ZHANG Yu-jia, ZHENG Wen-sheng. Progress in Targeted Delivery Systems for Hepatic Stellate Cell Biomarkers[J]. Chinese Pharmaceutical Journal, 2021, 56(7): 517-525 https://doi.org/10.11669/cpj.2021.07.001
中图分类号: R944   

参考文献

[1] CHI Z C. Practical Clinical Hepatology(实用临床肝病学)[M]. 2nd Ed. Beijing: People′s Military Medical Press, 2015:173-176.
[2] LEE Y A, WALLACE M C, FRIEDMAN S L. Pathobiology of liver fibrosis: a translational success story [J]. Gut, 2015, 64(5): 830-841.
[3] SCHLAGETER M, TERRACCIANO L M, D′ANGELO S, et al. Histopathology of hepatocellular carcinoma [J]. World J Gastroenterol, 2014, 20(43): 15955-15964.
[4] CHEN Z, JAIN A, LIU H, et al. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis [J]. J Pharmacol Exp Ther, 2019, 370(3): 695-702.
[5] SCHUPPAN D, ASHFAQ-KHAN M, YANG A T, et al. Liver fibrosis: direct antifibrotic agents and targeted therapies [J]. Matrix Biol, 2018, 68-69: 435-451.
[6] BORKHAM-KAMPHORST E, WEISKIRCHEN R. The PDGF system and its antagonists in liver fibrosis [J]. Cytokine & Growth Factor Rev, 2016, 28: 53-61.
[7] PINZANI M, MILANI S, HERBST H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis [J]. Am J Pathol, 1996, 148(3):785-800.
[8] BELJAARS L, WEERT B, GEERTS A, et al. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue [J]. Biochem Pharmacol, 2003, 66(7):1307-1317.
[9] KREYSING J, STMAN A, POLL M V D, et al. Identification of three amino acid residues in the B-chain of platelet-derived growth factor with different importance for binding to PDGF α-and β-receptors [J]. Febs Lett, 1996, 385(3): 181-184.
[10] CLEMENTS J M, BAWDEN L J, BLOXIDGE R E, et al. Two PDGF-B chain residues, arginine 27 and isoleucine 30, mediate receptor binding and activation [J]. EMBO J, 1991, 10(13): 4113-4120.
[11] BREITKOPF K, ROEYEN C, SAWITZA I, et al. Expression patterns of PDGF-A,-B,-C and-D and the PDGF-receptors α and β in activated rat hepatic stellate cells (HSC) [J]. Cytokine, 2005, 31(5):349-357.
[12] IKEDA K, WAKAHARA T, WANG Y Q, et al. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation [J]. Hepatology, 1999, 29(6):1760-1767.
[13] HAGENS W I, MATTOS A, GREUPINK R, et al. Targeting 15d-prostaglandin J2 to hepatic stellate cells: two options evaluated [J]. Pharm Res, 2007, 24(3): 566-574.
[14] SCHOEMAKER M H, ROTS M G, BELJAARS L, et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells [J]. Mol Pharm, 2008, 5(3): 399-406.
[15] RUCHI B, JAI P, MARIEKE D R, et al. Peptide-modified albumin carrier explored as a novel strategy for a cell-specific delivery of interferon gamma to treat liver fibrosis [J]. Mol Pharm, 2011, 8(5): 1899-1909.
[16] LI F, LI Q H, WANG J Y, et al. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor-beta on hepatic fibrosis in rats [J]. J Controlled Release, 2012, 159(2): 261-270.
[17] TAIMR P, HIGUCHI H, KOCOVA E, et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis [J]. Hepatology, 2003,33(1):87-95.
[18] LINDBORG M, CORTEZ E, HÖIDÉN-GUTHENBERG I, et al. Engineered high-affinity affibody molecules targeting platelet-derived growth factor receptor β in vivo [J]. J Mol Biol, 2011, 407(2): 298-315.
[19] LI R, LI Z, FENG Y, et al. PDGFRbeta-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis [J]. Apoptosis, 2020, 25(1-2): 105-119.
[20] BUHL E M, DJUDJAJ S, KLINKHAMMER B M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis[J]. EMBO Mol Med, 2020, 2(3):e11021.
[21] SABINE R W, JOHN M, SIMON G. Integrins as therapeutic targets: successes and cancers [J]. Cancers, 2017, 9(9): 110.
[22] LI D, HE L, GUO H, et al. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging [J]. EJNMMI Res, 2015, 5(1): 71.
[23] SEGUIN L, DESGROSELLIER J S, WEIS S M, et al. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance [J]. Trends Cell Biol, 2015, 25(4): 234-240.
[24] HUMPHRIES M J. Integrin structure [J]. Biochem Soc Trans, 2000, 28(4): 311-339.
[25] ZHENG Y, LEFTHERIS K. Insights into protein-ligand interactions in integrin complexes: advances in structure determinations [J]. J Med Chem, 2020, 63(11): 5675-5696.
[26] ZHOU X, MURPHY F R, GEHDU N, et al. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells [J]. J Biol Chem, 2004, 279(23): 23996-4006.
[27] HUANG X W, WANG J Y, LI F, et al. Biochemical characterization of the binding of cyclic RGDyK to hepatic stellate cells [J]. Biochem Pharmacol, 2010, 80(1): 136-143.
[28] JIQING X, YULI C, LEILEI Z, et al. Ultrasound molecular imaging with cRGD-PLGA-PFOB nanoparticles for liver fibrosis staging in a rat model [J]. Oncotarget, 2017, 8(65): 108676-108691.
[29] HENDERSON N C, ARNOLD T D, KATAMURA Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs [J]. Nat Med, 2013, 19(12): 1617-1624.
[30] LI Y, PU S, LIU Q, et al. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis [J]. J Controlled Release, 2019, 303: 77-90.
[31] WANG Q B, HAN Y, JIANG T T, et al. MR Imaging of activated hepatic stellate cells in liver injured by CCl4 of rats with integrin-targeted ultrasmall superparamagnetic iron oxide [J]. Eur Radiol, 2011, 21(5): 1016-1025.
[32] ZEVON M, GANAPATHY V, KANTAMNENI H, et al. CXCR-4 targeted, short wave infrared (SWIR) emitting nanoprobes for enhanced deep tissue imaging and micrometastatic cancer lesion detection [J]. Small, 2015, 11(47): 6347-6357.
[33] WALD O, PAPPO O, SAFADI R, et al. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus [J]. Eur J Immunol, 2004, 34(4): 1164-1174.
[34] SUNG Y C, LIU Y C, CHAO P H, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development [J]. Theranostics, 2018, 8(4): 894-905.
[35] CHEN Y, HUANG Y, REIBERGER T, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by SDF1α/CXCR4 axis and Gr-1+ myeloid cell infiltration in mice [J]. Other, 2014, 59(4): 1435-1447.
[36] ULLAH A, WANG K, WU P, et al. CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGFbeta-induced HSC-T6 cells activation [J]. Int J Nanomed, 2019, 14: 2927-2944.
[37] LIU J Y, CHIANG T, LIU C H, et al. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer [J]. Mol Ther, 2015, 23(11): 1772-1782.
[38] KULARATNE S A, DESHMUKH V, MA J, et al. A CXCR4-targeted site-specific antibody-drug conjugate [J]. Angew Chem Int Ed Engl, 2014, 53(44): 11863-11867.
[39] FALGAS A, PALLARES V, UNZUETA U, et al. A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models [J]. Haematologica, 2020, 105(3): 741-753.
[40] UNZUETA U, CESPEDES M V, FERRER-MIRALLES N, et al. Intracellular CXCR4(+) cell targeting with T22-empowered protein-only nanoparticles [J]. Int J Nanomed, 2012, 7: 4533-4544.
[41] MCCALLION C, PETERS A D, BOOTH A, et al. Dual-action CXCR4-targeting liposomes in leukemia: function blocking and drug delivery [J]. Blood Adv, 2019, 3(14): 2069-2081.
[42] LORÉAL O, CLÉMENT B, SCHUPPAN D, et al. Distribution and cellular origin of collagen VI during development and in cirrhosis [J]. Gastroenterology, 1992, 102(3): 980-987.
[43] POPOV Y, SCHUPPAN D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies [J]. Hepatology, 2009, 50(4): 1294-1306.
[44] MARCELINO J, MCDEVITT C A. Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen [J]. Biochim Biophys Acta, 1995, 1249(2): 180-188.
[45] BELJAARS L, MOLEMA G, SCHUPPAN D, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor [J]. J Biol Chem, 2000, 275(17): 12743-12751.
[46] DU S L, PAN H, LU W Y, et al. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats [J]. J Pharmacol Exp Ther, 2007, 322(2): 560-568.
[47] LI F, SUN J Y, WANG J Y, et al. Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis [J]. J Controlled Release, 2008, 131(1): 77-82.
[48] YANG J, HOU Y, JI G, et al. Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats [J]. Eur J Pharm Sci, 2014, 52: 180-190.
[49] TRIM N, MORGAN S, EVANS M, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation [J]. Am J Pathol, 2000, 156(4): 1235-1243.
[50] ASAHINA K, TSAI S Y, LI P, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development [J]. Hepatology, 2009, 49(3): 998-1011.
[51] CASSIMAN D, DENEF C, DESMET V J, et al. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors [J]. Hepatology, 2001, 33(1): 148-158.
[52] HE X L, GARCIA K C. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75 [J]. Science, 2004,304(5672):870-875.
[53] SCHACHTRUP C, LE MOAN N, PASSINO M A, et al. Hepatic stellate cells and astrocytes: stars of scar formation and tissue repair [J]. Cell Cycle, 2011, 10(11): 1764-1771.
[54] AMORAS EDA S, GOMES S T, FREITAS F B, et al. NGF and P75NTR gene expression is associated with the hepatic fibrosis stage due to viral and non-viral causes [J]. PLoS One, 2015, 10(3): e0121754.
[55] ASAI K, TAMAKAWA S, YAMAMOTO M, et al. Activated hepatic stellate cells overexpress p75NTR after partial hepatectomy and undergo apoptosis on nerve growth factor stimulation [J]. Liver International, 2006, 26(5): 595-603.
[56] REETZ J, GENZ B, MEIER C, et al. Development of adenoviral delivery systems to target hepatic stellate cells in vivo [J]. PLoS One, 2013, 8(6): e67091.
[57] SCHON H T, BARTNECK M, BORKHAM-KAMPHORST E, et al. Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis [J]. Front Pharmacol, 2016, 7: 33.
[58] HAISMA H J, GRILL J, CURIEL D T, et al. Targeting of adenoviral vectors through a bispecific single-chain antibody[J]. Cancer Gene Ther, 2000, 7(6):901-904.
[59] O'RIORDAN C R, LACHAPELLE A, DELGADO C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo [J]. Human Gene Ther, 1999, 10(8): 1349-1358.
[60] ISE H, KOBAYASHI S, GOTO M, et al. Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces [J]. Glycobiology, 2010, 20(7): 843-864.
[61] GOLDIE K N, WEDIG T, MITRA A K, et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography [J]. J Struct Biol, 2007, 158(3): 378-385.
[62] PAULIN D, LI Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle [J]. Exp Cell Res, 2004, 301(1): 1-7.
[63] ISE H, GOTO M, KOMURA K, et al. Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin [J]. Glycobiology, 2012, 22(6): 788-805.
[64] IVASKA J, PALLARI H M, NEVO J, et al. Novel functions of vimentin in cell adhesion, migration, and signaling [J]. Exp Cell Res, 2007, 313(10): 2050-2062.
[65] NIKI T, PEKNY M, HELLEMANS K, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells [J]. Hepatology, 1999, 29(2): 520-527.
[66] KIM S J, ISE H, GOTO M, et al. Interactions of vimentin-or desmin-expressing liver cells with N-acetylglucosamine-bearing polymers [J]. Biomaterials, 2012, 33(7): 2154-2164.
[67] KIM S J, ISE H, KIM E, et al. Imaging and therapy of liver fibrosis using bioreducible polyethylenimine/siRNA complexes conjugated with N-acetylglucosamine as a targeting moiety [J]. Biomaterials, 2013, 34(27): 6504-6514.
[68] ZHANG D, ZHUANG R, GUO Z, et al. Desmin-and vimentin-mediated hepatic stellate cell-targeting radiotracer (99m)Tc-GlcNAc-PEI for liver fibrosis imaging with SPECT [J]. Theranostics, 2018, 8(5): 1340-1349.
[69] ASO S, ISE H, TAKAHASHI M, et al. Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro [J]. J Controlled Release, 2007, 122(2): 189-198.
[70] MORGAN D O, EDMAN J C, STANGRING D N, et al. Insulin-like growth factor II receptor as a multifunctional binding protein [J]. Nature, 1987, 329(6137): 2636-2658.
[71] ZHAO Z, LI Y, JAIN A, et al. Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells [J]. Nanomedicine, 2018, 14(1): 51-61.
[72] BLESER P J D, JANNES P, BUUL-OFFERS S C V, et al. Insulinlike growth factor-II/mannose 6-phosphate receptor is expressed on cc1 4-exposed rat fat-storing cells and facilitates activation of latent transforming growth factor-β in cocultures with sinusoidal endothelial cells [J]. Hepatology, 1995, 21(5): 1429-1437.
[73] CAVAL T, ZHU J, TIAN W, et al. Targeted analysis of lysosomal directed proteins and their sites of mannose-6-phosphate modification [J]. Mol Cell Proteomics, 2019, 18(1): 16-27.
[74] WEINER J A, CHEN A, DAVIS B H. E-box-binding repressor is down-regulated in hepatic stellate cells during up-regulation of mannose 6-phosphate/insulin-like growth factor-II receptor expression in early hepatic fibrogenesis [J]. J Biol Chem, 1998, 273(26): 15913-15919.
[75] GREUPINK R, BAKKER H I, VAN GOOR H, et al. Mannose-6-phosphate/insulin-like growth factor-II receptors may represent a target for the selective delivery of mycophenolic acid to fibrogenic cells [J]. Pharm Res, 2006, 23(8): 1827-1834.
[76] KOVACINA K S, STEELE-PERKINS G, PURCHIO A F, et al. Interactions of recombinant and platelet transforming growth factor-beta 1 precursor with the insulin-like growth factor II/mannose 6-phosphate receptor [J]. Biochem Biophys Res Comm, 1989, 160(1): 393-403.
[77] PURCHIO A F, COOPER J A, BRUNNER A M, et al. Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-beta 1 precursor [J]. J Biol Chem, 1988, 263(28): 14211-14215.
[78] DENNIS P A, RIFKIN D B. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type Ⅱ receptor [J]. Proc Nat Acad Sci, 1991, 88(2): 580-584.
[79] BELJAARS L, MOLEMA G, WEERT B, et al. Albumin modified with mannose 6-phosphate: a potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells [J]. Hepatology (Baltimore, Md), 1999, 29(5): 1486-1493.
[80] GREUPINK R, BAKKER H I, BOUMA W, et al. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo [J]. J Pharmacol Exp Ther, 2006, 317(2): 514-521.
[81] GONZALO T, BELJAARS L, VAN DE BOVENKAMP M, et al. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells [J]. J Pharmacol Exp Ther, 2007, 321(3): 856-865.
[82] MORENO M, GONZALO T, KOK R J, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats [J]. Hepatology, 2010, 51(3): 942-952.
[83] YE Z, CHENG K, GUNTAKA R V, et al. Receptor-mediated hepatic uptake of M6P-BSA-conjugated triplex-forming oligonucleotides in rats [J]. Bioconjug Chem, 2006, 17(3): 823-830.

基金

十三五科技重大新药创制项目资助(2018ZX09721003-008-017);中国医学科学院医学与健康科技创新工程基金项目资助(2017-I2M-1-011)
PDF(1268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/