Abstract:Solid dispersions provide an effective technical method for improving solubility and bioavailability of insoluble drugs. From its discovery to the present 60 years, 26 drug formulations have been approved by FDA. Moreover, the preparation technology of solid dispersion system has been continuously innovated and developed, such as electrospinning method, supercritical fluid method, spray freeze-drying technology and so on. In this paper, the development process of solid dispersion technology and carrier is reviewed, and the development of solid dispersion technology and carrier is summarized, and the existing problems are analyzed and prospected. It is expected to provide the reference for the research and development of drug solid dispersion.
LOFTSSON T, BREWSTER M E. Pharmaceutical applications of cyclodextrins: basic science and product development[J]. J Pharm Pharmacol, 2010, 62(11):1607-1621.
[2]
REN X, QIAN H, TANG P, et al. Preparation, characterization, and properties of inclusion complexes of balofloxacin with cyclodextrins[J]. AAPS Pharm Sci Tech, 2019, 20(7):278-287.
[3]
ALMEIDA S R D, TIPPAVAJHALA V K. A rundown through various methods used in the formulation of solid self-emulsifying drug delivery systems(S-SEDDS)[J]. AAPS Pharm Sci Tech, 2019, 20(8):323-336.
[4]
RADWAN A, EL-LAKKANY N M, WILLIAM S, et al. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection[J]. Parasit Vectors, 2019, 12(1):304-315.
[5]
WANG L, WU W, WANG L, et al. Highly water-soluble solid dispersions of honokiol: preparation, solubility, and bioavailability studies and anti-tumor activity evaluation[J]. Pharmaceutics, 2019, 11(11):573-587.
[6]
KUMAR R, SIRIL P F. Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation[J]. AAPS Pharm Sci Tech, 2018, 19(1):284-292.
[7]
CHEN Q Q, DONG S, WANG D K. Advances in solid dispersion technology [J]. Chin J Pharm(Online)(中国药剂学杂志 网络版), 2019, 17(4):127-134.
[8]
CHOI J S, CHO N H, KIM D H, et al. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 247-259.
[9]
ELLENBERGER D J, MILLER D A, WILLIAMS R O 3rd. Expanding the application and formulation space of amorphous solid dispersions with KinetiSol(R):a review[J]. AAPS Pharm Sci Tech, 2018, 19(5):1933-1956.
[10]
BALOGH A, FARKAS B, PALVOLGYI A, et al. Novel alternating current electrospinning of hydroxypropylmethylcellulose acetate succinate (HPMCAS) nanofibers for dissolution enhancement: the importance of solution conductivity[J]. J Pharm Sci, 2017, 106(6):1634-1643.
[11]
SEKIGUCHI K N, UEDA Y. Studies on absorption of eutectic mixture. Ii. absorption of fused conglomerates of chloramphenicol and urea in rabbits[J]. Chem Pharm Bull (Tokyo), 1964, 12: 134-144.
[12]
MAYERSOHN M, GIBALDI M. New method of solid-state dispersion for increasing dissolution rates[J]. J Pharm Sci, 1966, 55(11):1323-1324.
[13]
LEVY G. Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals[J]. Am J Pharm Sci Support Public Health, 1963, 135: 78-92.
[14]
KANIG J L. Properties of fused mannitol in compressed tablets[J]. J Pharm Sci, 1964, 53: 188-192.
[15]
CHIOU W L. Mechanism of increased rates of dissolution and oral absorption of chloramphenicol from chloramphenicol-urea solid dispersion system[J]. J Pharm Sci, 1971, 60(9):1406-1408.
[16]
ARIAS M J, GINES J M, MOYANO J R, et al. The application of solid dispersion technique with D-mannitol to the improvement in oral absorption of triamterene[J]. J Drug Target, 1994, 2(1):45-51.
[17]
SIMONELLI A P, MEHTA S C, HIGUCHI W I. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates[J]. J Pharm Sci, 1969, 58(5):538-549.
[18]
CHIOU W L, RIEGELMAN S. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin[J]. J Pharm Sci, 1969, 58(12):1505-1510.
[19]
LIPINSKI C A, LOMBARDO F, DOMINY B W, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46(1-3):3-26.
[20]
JANSSENS S, VAN DEN MOOTER G. Review: physical chemistry of solid dispersions[J]. J Pharm Pharmacol, 2009, 61(12):1571-1586.
[21]
BAJRACHARYA R, LEE S H, SONG J G, et al. Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: preparation and in vitro/in vivo characterization[J]. Pharmaceutics, 2019, 11(5):206-219.
[22]
DANDA L J A, BATISTA L M, MELO V C S, et al. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer[J]. Eur J Pharm Sci, 2019, 133: 79-85.
[23]
GAO Y, CHEN G, LUAN X, et al. Improved oral absorption of poorly soluble curcumin via the concomitant use of borneol[J]. AAPS Pharm Sci Tech, 2019, 20(4):150-159.
[24]
FEBRIYENTI F, RAHMI S, HALIM A. Study of gliclazide solid dispersion systems using PVP K-30 and PEG 6000 by solvent method[J]. J Pharm Bioallied Sci, 2019, 11(3):262-267.
[25]
LIU Y, WANG T, DING W, et al. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions[J]. Drug Deliv Transl Res, 2018, 8(3):580-590.
[26]
ZHANG S, MENG X, WANG Z, et al. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs[J]. Eur J Pharm Sci, 2017, 100: 109-115.
[27]
LI N, TAYLOR L S. Tailoring supersaturation from amorphous solid dispersions[J]. J Controlled Release, 2018, 279: 114-125.
[28]
XIONG X, ZHANG M, HOU Q, et al. Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation[J]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110012.
[29]
SKOLAKOVA T, SLAMOVA M, SKOLAKOVA A, et al. Investigation of dissolution mechanism and release kinetics of poorly water-soluble tadalafil from amorphous solid dispersions prepared by various methods[J]. Pharmaceutics, 2019, 11(8):383-407.
[30]
GOYANES A, ALLAHHAM N, TRENFIELD S J, et al. Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process[J]. Int J Pharm, 2019, 567: 118471.
[31]
MOHAMMED K A, IBRAHIM H K, GHORAB M M. Effervescent tablet formulation for enhanced patient compliance and the therapeutic effect of risperidone[J]. Drug Deliv, 2016, 23(1):297-306.
[32]
SRINARONG P, HAMALAINEN S, MARINELLA R.V, et al. Surface-active derivative of inulin is a superior carrier for solid dispersions with a high drug load[J]. J Pharm Sci, 2011, 100(6):2333-2342.
[33]
THONGNOPKOON T, PUTTIPIPATKHACHORN S. Stabilizing ability of surfactant on physicochemical properties of drug nanoparticles generated from solid dispersions[J]. Drug Dev Ind Pharm, 2017, 43(7):1082-1092.
[34]
ZHANG W, HATE S S, RUSSELL D J, et al. Impact of surfactant and surfactant-polymer interaction on desupersaturation of clotrimazole[J]. J Pharm Sci, 2019, 108(10):3262-3271.
[35]
KIM S A, KIM S H, CHOI H K, et al. Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats[J]. Eur J Pharm Sci, 2013, 49(5):800-804.
[36]
ZI P, ZHANG C, JU C, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant-Soluplus[J]. Eur J Pharm Sci, 2019, 134: 233-245.
[37]
VASCONCELOS T, SARMENTO B, COSTA P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs[J]. Drug Discov Today, 2007, 12(23-24):1068-1075.
[38]
MESALLATI H, UMERSKA A, PALUCH K J, et al. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin[J]. Mol Pharm, 2017, 14(7):2209-2223.
[39]
MONSCHKE M, WAGNER K G. Amorphous solid dispersions of weak bases with pH-dependent soluble polymers to overcome limited bioavailability due to gastric pH variability-an in vitro approach[J]. Int J Pharm, 2019, 564: 162-170.
[40]
SOLANKI N G, LAM K, TAHSIN M, et al. Effects of surfactants on itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: miscibility and drug release[J]. J Pharm Sci, 2019, 108(4):1453-1465.
[41]
MENG F, MECKEL J, ZHANG F. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol[J]. Eur J Pharm Sci, 2017, 106: 413-421.
[42]
SCHVER G, LEE P I. Combined effects of supersaturation rates and doses on the kinetic-solubility profiles of amorphous solid dispersions based on water-insoluble poly(2-hydroxyethyl methacrylate) hydrogels[J]. Mol Pharm, 2018, 15(5):2017-2026.
[43]
DITZINGER F, PRICE D J, NAIR A, et al. Opportunities for successful stabilization of poor glass-forming drugs: a stability-based comparison of mesoporous silica versus hot melt extrusion technologies[J]. Pharmaceutics, 2019, 11(11):577-591.
[44]
MIZUNO M , HIRAKURA Y , YAMANE I , et al. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging[J]. Int J Pharm, 2005, 305(1-2):37-51.
[45]
NGUYEN T N, TRAN P H, VO T V, et al. Development of a sustained release solid dispersion using swellable polymer by melting method[J]. Pharm Res, 2016, 33(1):102-109.
[46]
SOLANKI N, GUPTA S S, SERAJUDDIN A T M. Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion[J]. Eur J Pharm Sci, 2018, 111: 482-491.
[47]
ELLENBERGER D J, MILLER D A, KUCERA S U, et al. Generation of a weakly acidic amorphous solid dispersion of the weak base ritonavir with equivalent in vitro and in vivo performance to norvir tablet[J]. AAPS Pharm Sci Tech, 2018, 19(5):1985-1997.
[48]
ZAWAR L R, BARI S B. Preparation, characterization and in vivo evaluation of antihyperglycemic activity of microwave generated repaglinide solid dispersion[J]. Chem Pharm Bull (Tokyo), 2012, 60(4):482-487.
[49]
WEI CAN, SOLANKI NAYAN G, VASOYA JAYDIP M, et al. Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release[J]. J Pharm Sci, 2020, 109:1558-1572.
[50]
ZIAEE A, ALBADARIN A B, PADRELA L, et al. Spray drying ternary amorphous solid dispersions of ibuprofen-An investigation into critical formulation and processing parameters[J]. Eur J Pharm Biopharm, 2017,120: 43-51.
[51]
VAN DROOGE D J, HINRICHS W L, DICKHOFF B H, et al. Spray freeze drying to produce a stable delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation[J]. Eur J Pharm Sci, 2005, 26(2):231-240.
[52]
OBAIDAT R M, TASHTOUSH B M, AWAD A A, et al. Using supercritical fluid technology (SFT) in preparation of tacrolimus solid dispersions[J]. AAPS Pharm Sci Tech, 2016, 18(2):1-13.
[53]
LIU H, DU K, LI D, et al. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology[J]. Int J Nanomed, 2018, 13: 8379-8393.
[54]
DINUNZIO J C, BROUGH C , MILLER D A, et al. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion[J]. J Pharm Sci, 2010, 99(3):1239-1253.
[55]
MADAN J R, PAWAR A R, PATIL R B, et al. Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast[J]. Polim Med, 2018, 48(1):17-24.
[56]
ALBARAHMIEH E, ALBARAHMIEH M, ALKHALIDI B A, et al. Fabrication of hierarchical polymeric thin films by spin coating toward production of amorphous solid dispersion for buccal drug delivery system: preparation, characterization, and in vitro release investigations[J]. J Pharm Sci, 2018, 107: 3112-3122.
[57]
ALI M E, LAMPRECHT A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles[J]. Int J Pharm, 2017, 516(1-2):170-177.
[58]
AMSTAD E, GOPINADHAN M, HOLTZE C, et al. NANOPARTICLES. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator[J]. Science, 2015, 349(6251):956-960.
[59]
YOON J, YANG H S, LEE B S, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications[J]. Adv Mater, 2018, 30(42):e1704765. 1704765.1-1704765.23.
[60]
IBRAHIM Y S, HUSSEIN E A, ZAGHO M M, et al. Melt electrospinning designs for nanofiber fabrication for different applications[J]. Int J Mol Sci, 2019, 20(10):2455-2471.
[61]
XU H, BRONNER T,YAMAMOTO M, et al. Regeneration of cellulose dissolved in ionic liquid using laser-heatedmelt-electrospinning[J]. Carbohydr Polym, 2018, 201: 182-188.
[62]
HASER A, ZHANG F. New strategies for improving the development and performance of amorphous solid dispersions[J]. AAPS Pharm Sci Tech, 2018, 19: 978-990.
[63]
HAN Y R, MA Y S, LEE P I. Impact of phase separation morphology on release mechanism of amorphous solid dispersions[J]. Eur J Pharm Sci, 2019, 136: 104955.
[64]
FUNG M H, SURYANARAYANAN R. Use of a plasticizer for physical stability prediction of amorphous solid dispersions[J]. Crystal Growth & Design, 2017:acs.cgd.7b00625.
[65]
NURZYNSKA K, BOOTH J, ROBERTS C J, et al. Long-term amorphous drug stability predictions Using easily calculated, predicted, and measured parameters[J]. Mol Pharm, 2015, 12: 3389-3398.
[66]
KHARAD S L, RANE S, SHARMA N, et al. Quality by design: facilitate a robust pharmaceutical process[J]. J Pharm Res, 2011(8):2741-2743.
[67]
CHAVES L L, VIEIRA A C, REIS S, et al. Quality by design: discussing and assessing the solid dispersions risk[J]. Curr Drug Deliv, 2014, 11: 253-269.
[68]
GARCIA T, COOK G, NOSAL R. PQLI key topics-criticality, design space, and control strategy[J]. Pharm Inno, 2008, 3:60-68.