The Role of Class Ⅲ PI3K/Beclin-1 Autophagy Pathway in Up-Regulation of ETA Receptor in Mesenteric Artery of Mice by mmLDL
CHEN Chen1, ZENG Zhong-san1, XIE Xi1, QIN Xu-ping1, LI Jie 1,2*
1. Chenzhou Frst People's Hospital, South China University, Chenzhou 423000, China; 2. Institute of Pharmaceutical Pharmacology, Nanhua University, Hengyang 421001, China
Abstract:OBJECTIVE To investigate the effect of minimally modified low-density lipoprotein (mmLDL) on ETA receptor of mesenteric artery (endothelin type A receptors, ETA) in mice for the first time and whether autophagy is involved in this process. METHODS Mice were injected mmLDL in the tail vein and intraperitoneally with Class Ⅲ PI3K autophagy pathway inhibitor 6-amino-3-methylpurine (3-MA) to explore the role of autophagy in mmLDL treated mice. The changes of vasoconstriction curve of mesenteric artery induced by ET-1 (endothelin 1) in mice were observed by a sensitive myograph system. ETA receptor was detected by RT-PCR quantitative mRNA and Western blot. The protein levels of Class Ⅲ PI3K, Beclin-1, LC3-Ⅱ/Ⅰ, p62 and p-NF-κB, NF-κB were detected by Western blot. RESULTS The contractility curve of ET-1 induced by mmLDL was significantly enhanced, showing that the Emax value increased from the nomal saline (NS) group (184.87±7.46)% to (319.91±20.31)% (P < 0.001), the pEC50 increased from NS group (8.05±0.05) to (9.11±0.09) (P<0.01). mmLDL up-regulated Class Ⅲ PI3K,beclin-1,LC3-Ⅱ/Ⅰ and down-regulated p62 protein level, at the same time, it also caused the ETA receptor mRNA level, protein expression increased significantly, up-regulated the protein level of p-NF-κB; intraperitoneal injection of 3-MA inhibits these effects of mmLDL. CONCLUSION mmLDL can activate autophagy and down-stream NF-κB pathway through Class Ⅲ PI3K/Beclin-1 pathway to up-regulate ETA receptor.
陈琛, 曾中三, 谢希, 秦旭平, 李洁. Class Ⅲ PI3K/Beclin-1自噬通路参与mmLDL上调小鼠肠系膜动脉ETA受体的研究[J]. 中国药学杂志, 2020, 55(11): 900-907.
CHEN Chen, ZENG Zhong-san, XIE Xi, QIN Xu-ping, LI Jie. The Role of Class Ⅲ PI3K/Beclin-1 Autophagy Pathway in Up-Regulation of ETA Receptor in Mesenteric Artery of Mice by mmLDL. Chinese Pharmaceutical Journal, 2020, 55(11): 900-907.
LAVANDERO S, TRONCOSO R, ROTHERMEL B A, et al. Cardiovascular autophagy: concepts, controversies, and perspectives[J]. Autophagy, 2013, 9(10):1455-1466.
[2]
GATICA D, CHIONG M, LAVANDERO S, et al. Molecular mechanisms of autophagy in the cardiovascular system[J]. Circ Res, 2015, 116(3):456-467.
[3]
FENG Y, HE D, YAO Z, et al. The machinery of macroautophagy[J]. Cell Res, 2014, 24(1):24-41.
[4]
DAVENPORT A P, MAGUIRE J J. Endothelin[J]. Handb Exp Pharmacol, 2006(176 Pt 1):295-329.
[5]
CEYLAN-ISIK A F, DONG M, ZHANG Y, et al. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy[J]. Basic Res Cardiol, 2013, 108(2):335.
[6]
ANN S J, KIM K K, CHEON E J, et al. Palmitate and minimally-modified low-density lipoprotein cooperatively promote inflammatory responses in macrophages[J]. PLoS One, 2018, 13(3):e0193649.
[7]
CHOI S H, SVIRIDOV D, MILLER Y I. Oxidized cholesteryl esters and inflammation[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(4):393-397.
[8]
LIU Y, CHEN X L, XU C B, et al. Tail vein injection of mmLDL upregulates mouse mesenteric artery ETB receptors via activation of the ERK1/2 pathway[J]. Vascul Pharmacol, 2017, 96-98:33-39.
[9]
WANG J J, CHEN X L, XU C B, et al. The ERK1/2 pathway participates in the upregulation of the expression of mesenteric artery alpha1 receptors by intravenous tail injections of mmLDL in mice[J]. Vascul Pharmacol, 2016, 77:80-88.
[10]
CHEN G, WANG J J, XU C B, et al. Minimally modified LDL-induced impairment of endothelium-dependent relaxation in small mesenteric arteries of mice[J]. J Vasc Res, 2016, 53(1-2):58-71.
[11]
ITABE H, MORI M, FUJIMOTO Y, et al. Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines[J]. J Biochem, 2003, 134(3):459-465.
[12]
NASSER S A, ELMALLAH A I, SABRA R, et al. Blockade of endothelin ET(A), but not thromboxane, receptors offsets the cyclosporine-evoked hypertension and interrelated baroreflex and vascular dysfunctions[J]. Eur J Pharmacol, 2014, 727:52-59.
[13]
EL-MAS M M, MOHY EL-DIN M M, HELMY M M, et al. Redox imbalances incite the hypertensive, baroreflex, and autonomic effects of cyclosporine in rats[J]. Eur J Pharmacol, 2012, 694(1-3):82-88.
[14]
HONG I S, COE H V, CATANZARO L M. Macitentan for the treatment of pulmonary arterial hypertension[J]. Ann Pharmacother, 2014, 48(4):538-547.
[15]
TAGUCHI K, HATTORI Y. Unlooked-for significance of cardiac versus vascular effects of endothelin-1 in the pathophysiology of pulmonary arterial hypertension[J]. Circ Res, 2013, 112(2):227-229.
[16]
KOHAN D E, POLLOCK D M. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease[J]. Br J Clin Pharmacol, 2013, 76(4):573-579.
[17]
HOLZHAUSER L, ZOLTY R. Endothelin receptor polymorphisms in the cardiovascular system: potential implications for therapy and screening[J]. Heart Fail Rev, 2014, 19(6):743-758.
[18]
KEDZIERSKI R M, GRAYBURN P A, KISANUKI Y Y, et al. Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin Ⅱ and isoproterenol[J]. Mol Cell Biol, 2003, 23(22):8226-8232.
[19]
SALABEI J K, HILL B G. Implications of autophagy for vascular smooth muscle cell function and plasticity[J]. Free Radic Biol Med, 2013, 65:693-703.
[20]
NEMCHENKO A, CHIONG M, TURER A, et al. Autophagy as a therapeutic target in cardiovascular disease[J]. J Mol Cell Cardiol, 2011, 51(4):584-593.
[21]
RIFKI O F, HILL J A. Cardiac autophagy: good with the bad[J]. J Cardiovasc Pharmacol, 2012, 60(3):248-252.
[22]
WANG Z V, FERDOUS A, HILL J A. Cardiomyocyte autophagy: metabolic profit and loss[J]. Heart Fail Rev, 2013, 18(5):585-594.
[23]
GROOTAERT M O, DA COSTA MARTINS P A, BITSCH N, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis[J]. Autophagy, 2015, 11(11):2014-2032.
[24]
HE H, DANG Y, DAI F, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B[J]. J Biol Chem, 2003, 278(31):29278-29287.
[25]
KOMATSU M, WAGURI S, KOIKE M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163.
[26]
YUE Z, JIN S, YANG C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor[J]. Proc Natl Acad Sci USA, 2003, 100(25):15077-15082.
[27]
LI J, CAO Y X, LIU Y, et al. Minimally modified LDL upregulates endothelin type B receptors in rat basilar artery[J]. Microvasc Res, 2012, 83(2):178-184.
[28]
COPETTI T, BERTOLI C, DALLA E, et al. p65/RelA modulates BECN1 transcription and autophagy[J]. Mol Cell Biol, 2009, 29(10):2594-2608.
[29]
PATTINGRE S, ESPERT L, BIARD-PIECHACZYK M, et al. Regulation of macroautophagy by mTOR and beclin 1 complexes[J]. Biochimie, 2008, 90(2):313-323.
[30]
TANIDA I, UENO T, KOMINAMI E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes[J]. J Biol Chem, 2004, 279(46):47704-47710.