Abstract:The low aqueous solubility is the main reason that for most pharmacological active ingredients are challengeable to develop into oral solid formulation. Polymeric amorphous solid dispersion(PASD) can greatly improve the apparent solubility and dissolution rate of poorly soluble drugs, has become a common technology to improve the oral bioavailability of poorly soluble drugs. However, due to the amorphous form of the drug at a high surface free energy in PASD, crystallization would occur during storage and dissolution, thereby losing its formulation advantages. The review attempts to provide a structural development approach of PASD products from the aspects of formulation and technology, in order to guide the development of stable and commercially viable PASD formulations. And the trend analysis of marketed products and patents of PASD will be discussed to understand the prospects of PASD's application in improving the bioavailability of poorly soluble oral solid formulations.
李思佳, 王森怡, 李凌晖, 涂迎盈, 蒋曙光. 基于聚合物无定形固体分散体技术的难溶性药物口服固体制剂开发[J]. 中国药学杂志, 2020, 55(3): 169-176.
LI Si-jia, WANG Sen-yi, LI Ling-hui, TU Ying-ying, JIANG Shu-guang. Development of Oral Solid Formulation for Insoluble Drugs Based on PASD Technology. Chinese Pharmaceutical Journal, 2020, 55(3): 169-176.
BAGHEL S, CATHCART H, O'REILLY N J. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class Ⅱ drugs[J]. J Pharm Sci, 2016,105(9):2527-2544.
[2]
LEE T W Y, BOERSEN N A, HUI H W, et al. Delivery of poorly soluble compounds by amorphous solid dispersions[J]. Curr Pharm Des, 2014,20(3):303-324.
[3]
JERMAIN S V, BROUGH C, WILLIAMS R O. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery-an update[J]. Int J Pharm, 2018,535(1-2):379-392.
[4]
QI S, MCAULEY W J, YANG Z, et al. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach[J]. Ther Deliv, 2014,5(7):817-841.
[5]
HAN Y, YUEYING H, YIWEI S, et al. A review on carriers and preparation techniques of amorphous solid dispersion[J]. Chin J New Drugs, 2017, 26(4):427-432.
[6]
PAGE S, MAURER R, WYTTENBACH N. Structured Development Approach for Amorphous Systems. In R. O. Williams Iii, A. B. Watts D. A. Miller (Eds.). Formulating Poorly Water Soluble Drugs (pp. 329-382)[M]. Cham: Springer International Publishing, 2016.
[7]
VERMA S, RUDRARAJU V S. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug[J]. Aaps Pharmscitech, 2014,15(3):641.
[8]
GUPTA S S, SOLANKI N, SERAJUDDIN A T M. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, Ⅳ: affinisol HPMC HME polymers[J]. Aaps Pharmscitech, 2016,17(1):148-157.
[9]
HANADA M, JERMAIN S V, WILLIAMS R O 3RD. Enhanced dissolution of a porous carrier-containing ternary amorphous solid dispersion system prepared by a hot melt method[J]. J Pharm Sci, 2018,107(1):362-371.
[10]
ROWE R J, SHESKEY P C, OWEN S. Hand Book of Pharmaceutical Excipients[M]. London:American Pharmaceutical Association, Pharmaceutical Press, 2006.
[11]
THAKRAL S, THAKRAL N K. Prediction of drug-polymer miscibility through the use of solubility parameter based flory-huggins interaction parameter and the experimental validation: PEG as model polymer[J]. J Pharm Sci, 2013,102(7):2254-2263.
[12]
HANCOCK B C, PARKS M. What is the true solubility advantage for amorphous pharmaceuticals?[J]. Pharm Res, 2000,17(4):397-404.
[13]
HE Y, HO C. Amorphous solid dispersions: utilization and challenges in drug discovery and development[J]. J Pharm Sci, 2015,104(10):3237-3258.
[14]
HASER A, ZHANG F. New strategies for improving the development and performance of amorphous solid dispersions[J]. Aaps Pharmscitech, 2018,19(3):978-990.
[15]
NEWMAN A, NAGAPUDI K, WENSLOW R. Amorphous solid dispersions: a robust platform to address bioavailability challenges[J]. Therapeu Deliv, 2015,6(2):247-261.
[16]
MEHTA M, KOTHARI K, RAGOONANAN V, et al. Effect water on molecular mobility and physical stability of amorphous pharmaceuticals[J]. Mol Pharm, 2016,13(4):acs. molpharmaceut. 5b00950.
[17]
MEHTA M, SURYANARAYANAN R. Accelerated physical stability testing of amorphous dispersions[J]. Mol Pharm, 2016,13(8):acs.molpharmaceut.6b00218.
[18]
KAWAKAMI K, HARADA T, MIURA K, et al. Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses[J]. Mol Pharm, 2014,11(6):1835-1843.
[19]
TU W K. Studies on the glass formation thermodynamics for pure and dinary molecular systems [D]. Qinhuangdao:Yanshan University,2017.
[20]
HIGASHI K, HAYASHI H, YAMAMOTO K, et al. The effect of drug and EUDRAGIT S 100 miscibility in solid dispersions on the drug and polymer dissolution rate[J]. Int J Pharm, 2015,494(1):9-16.
[21]
MENG F, TRIVINO A, PRASAD D, et al. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions[J]. Eur J Pharm Sci, 2015,71:12-24.
[22]
AMHARAR Y, CURTIN V, GALLAGHER K H, et al. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation[J]. Int J Pharm, 2014,472(1-2):241-247.
[23]
YU D G, LI J J, WILLIAMS G R, et al. Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review[J]. J Controlled Release, 2018,292:91-110.
[24]
VASCONCELOS T, MARQUES S, DAS NEVES J, et al. Amorphous solid dispersions: rational selection of a manufacturing process[J]. Adv Drug Deliv Rev, 2016,100:85-101.
[25]
JIE Z, TING C. Recent progress in manufacturing process of amorphous pharmaceutical solids[J]. Prog Pharm Sci, 2018,42(9):675-684.
[26]
AMRIT P. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying[J]. Pharm Res, 2012,29(1):251-270.
[27]
ALSHAHRANI S M, LU W, PARK J B, et al. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of soluplus and HPMCAS-HF[J]. Aaps Pharmscitech, 2015,16(4):824-834.
[28]
PRASAD L K, HUGHEY J R, MCGINITY J W, et al. Emerging technologies to increase the bioavailability of poorly water-soluble drugs. In WILLIAMS Iii R O, WATTS A B, MILLER D A.(Eds.). Formulating Poorly Water Soluble Drugs [M]. Cham: Springer International Publishing, 2016:691-740.
[29]
DMUTH B, FARKAS A, PATAKI H, et al. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning[J]. Int J Pharm, 2016,498(1) :234-244.
[30]
KIM M, HA E S, KIM J S, et al. Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process[J]. J Pharm Invest, 2015,45(7) :641-649.
[31]
SKOWYRA J, PIETRZAK K, ALHNAN M A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing[J]. Eur J Pharm Sci, 2015,68:11-17.
[32]
NAGY Z K, BALOGH A, DRVAVLGYI G, et al. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems[J]. J Pharm Sci, 2013,102(2):508-517.
[33]
REPKA M A, BANDARI S, KALLAKUNTA V R, et al. Melt extrusion with poorly soluble drugs-an integrated review[J]. Int J Pharm, 2018,535(1):68-85.
[34]
GHULE P. Amorphous Solid Dispersion: A Promising Technique for Improving Oral Bioavailability of Poorly Water-Soluble Drugs[J]. SA Pharm J, 2018,85(1):50-56.
[35]
RUMONDOR A C F, DHARESHWAR S S, KESISOGLOU F. Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption[J]. J Pharm Sci, 2016,105(9):2498-2508.