肾移植受者红细胞内6-甲基巯基嘌呤核糖核苷酸(6-MMPR)浓度的影响因素研究

师少军, 万景, 杨春晓, 周嘉黎, 魏叶, 黄希希, 张蕊, 刘亚妮,曾繁典

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (10) : 803-808.

PDF(1617 KB)
PDF(1617 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (10) : 803-808. DOI: 10.11669/cpj.2019.10.009
论著

肾移植受者红细胞内6-甲基巯基嘌呤核糖核苷酸(6-MMPR)浓度的影响因素研究

  • 师少军1, 万景1, 杨春晓1, 周嘉黎1, 魏叶1, 黄希希1, 张蕊1, 刘亚妮1,曾繁典2
作者信息 +

Influencing Factors Analysis of 6-Methylmercaptopurine Ribonucleotides (6-MMPR) in Human Red Blood Cell (RBC) in Kidney Transplant Recipients

  • SHI Shao-jun1, WAN Jing1, YANG Chun-xiao1, ZHOU Jia-li1, WEI Ye1, HUANG Xi-xi1, ZHANG Rui1, LIU Ya-ni1, ZENG Fan-dian2
Author information +
文章历史 +

摘要

目的 对服用硫唑嘌呤(AZA)的中国肾移植受者红细胞(RBC)内代谢物6-甲基巯基嘌呤核糖核苷酸(6-MMPR)进行监测及影响因素分析,为临床个体化用药提供参考。方法 以100例中国肾移植受者为研究对象,应用已确证的HPLC-紫外法检测RBC内6-MMPR浓度,关联分析多种因素,包括患者年龄、性别、体重、AZA剂量和硫嘌呤甲基转移酶(TPMT)活性,对6-MMPR浓度的影响;并应用SPSS20.0软件进行多元线性回归分析,考察6-MMPR浓度影响因素。结果 100例中国肾移植受者RBC内6-MMPR浓度呈非正态分布(P<0.000 1),浓度范围为65.75~10 616.00 pmol·(8×108)-1RBC。关联分析与多元线性回归分析结果均表明,患者年龄、性别、体重、AZA剂量对6-MMPR浓度均无显著影响(P>0.05);而RBC内TPMT活性与6-MMPR浓度水平间呈显著正相关性(P<0.001)。结论 RBC内TPMT活性是影响6-MMPR浓度的独立因素,进而影响该类药物临床疗效和毒性反应。

Abstract

OBJECTIVE To monitor and investigate the influencing factors of 6-methylmercaptopurine ribonucleotides (6-MMPR) in human red blood cell (RBC) in Chinese kidney transplant recipients treated with azathiopurine (AZA), and to provide references for clinical personalized medicine. METHODS In 100 Chinese kidney transplant recipients, the concentration of 6-MMPR in RBC was detected by validated HPLC-UV method. Correlation analysis was performed to analyze the effects of various factors, including patient age, gender, weight, AZA dose and thiopurine S-methyltransferase (TPMT) activity, on the 6-MMPR concentration, and multivariate linear regression analysis was performed using SPSS20.0 software to investigate the influencing factors of 6-MMPR concentration. RESULTS The concentration of 6-MMPR in 100 Chinese kidney transplant recipients was not normally distributed (P<0.000 1), and the concentration range was 65.75-10 616.00 pmol·(8×108)-1 RBC. Correlation analysis and multivariate linear regression analysis showed that age, gender, weight and AZA dose had no significant effect on 6-MMPR concentration (P>0.05), however, there was a significant positive correlation between TPMT activity and 6-MMPR concentration in RBC (P<0.001). CONCLUSION TPMT activity in RBC is an independent factor affecting 6-MMPR concentration, which in turn affects the clinical efficacy and toxicity of the drug.

关键词

肾移植受者 / 硫唑嘌呤(AZA) / 6-甲基巯基嘌呤核糖核苷酸(6-MMPR) / 影响因素 / 关联分析 / 多元线性回归分析

Key words

kidney transplant recipients / azathiopurine (AZA) / 6-methylmercaptopurine ribonucleotides (6-MMPR) / influencing factors / correlation analysis / multivariate linear regression analysis

引用本文

导出引用
师少军, 万景, 杨春晓, 周嘉黎, 魏叶, 黄希希, 张蕊, 刘亚妮,曾繁典. 肾移植受者红细胞内6-甲基巯基嘌呤核糖核苷酸(6-MMPR)浓度的影响因素研究[J]. 中国药学杂志, 2019, 54(10): 803-808 https://doi.org/10.11669/cpj.2019.10.009
SHI Shao-jun, WAN Jing, YANG Chun-xiao, ZHOU Jia-li, WEI Ye, HUANG Xi-xi, ZHANG Rui, LIU Ya-ni, ZENG Fan-dian. Influencing Factors Analysis of 6-Methylmercaptopurine Ribonucleotides (6-MMPR) in Human Red Blood Cell (RBC) in Kidney Transplant Recipients[J]. Chinese Pharmaceutical Journal, 2019, 54(10): 803-808 https://doi.org/10.11669/cpj.2019.10.009
中图分类号: R969   

参考文献

[1] MCCUNE J S, BEMER M J. Pharmacokinetics, pharmacodynamics and pharmacogenomics of immunosuppressants in allogeneic haematopoietic cell transplantation: part Ⅰ. Clin Pharmacokinet, 2016,55(5):525-550.
[2] MCCUNE J S, BEMER M J, LONG-BOYLE J. Pharmacokinetics, pharmacodynamics, and pharmacogenomics of immunosuppressants in allogeneic hematopoietic cell transplantation: part Ⅱ. Clin Pharmacokinet, 2016,55(5):551-593.
[3] THIERRY A, LE MEUR Y, ECOTIRE L, et al. Minimization of maintenance immunosuppressive therapy after renal transplantation comparing cyclosporine A/azathioprine or cyclosporine A/mycophenolate mofetil bitherapy to cyclosporine A monotherapy: a 10-year postrandomization follow-up study. Transpl Int, 2016,29(1):23-33.
[4] WAGNER M, EARLEY A K, WEBSTER A C, et al. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev, 2015,(12):CD007746.
[5] LIU Y P, XU H Q, LI M, et al. Association between thiopurine s-methyltransferase polymorphisms and azathioprine-induced adverse drug reactions in patients with autoimmune diseases: a Meta-analysis. PLoS One, 2015,10(12):e0144234.
[6] JOHNSON C M, DASSOPOULOS T. Update on the use of thiopurines and methotrexate in inflammatory bowel disease. Curr Gastroenterol Rep, 2018,20(11):53.
[7] DE WIT K, WHITE B, GOLDSMITH D. Thiopurine toxicity. Br J Hosp Med (Lond), 2013,74(suppl 10):C153-C156.
[8] MOON W, LOFTUS E V J R. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther, 2016,3(8):863-883.
[9] TAYLOR K M, WARD M G, BLAKER P A, et al. Is there a role for thioguanine therapy in IBD in 2017 and beyond? . Expert Rev Gastroenterol Hepatol, 2017,11(5):473-486.
[10] GOEL R M, BLAKER P, MENTZER A, et al. Optimizing the use of thiopurines in inflammatory bowel disease. Ther Adv Chronic Dis, 2015,6(3):138-146.
[11] SAHASRANAMAN S, HOWARD D, ROY S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol, 2008,64(8):753-767.
[12] KIM M J, CHOE Y H. Monitoring and safety of azathioprine therapy in inflammatory bowel disease. Pediatr Gastroenterol Hepatol Nutr, 2013,16(2):65-70.
[13] NGUYEN T V, VU D H, NGUYEN T M, et al. Relationship between azathioprine dosage and thiopurine metabolites in pediatric IBD patients: identification of covariables using multilevel analysis. Ther Drug Monit, 2013,35(2):251-257.
[14] HOLT D Q, STRAUSS B J, MOORE G T. Weight and body composition compartments do not predict therapeutic thiopurine metabolite levels in inflammatory bowel disease. Clin Transl Gastroenterol, 2016,7(10):e199.
[15] SHI S J, LIU Y N, WU J H, et al. Quantitation determination of 6-thioguanine nucleotides in red blood cells by HPLC. Her Med (医药导报), 2011,30(5):581-584.
[16] SHI S J, WU J H, LIU Y N, et al. Determination of the concentrations of 6-methylmercaptopurine ribonucleotides(6-MMPR) in human red blood cells by HPLC. Chin Hosp Pharm J (中国医院药学杂志), 2011,31(9):719-722.
[17] DUBINSKY M C, LAMOTHE S, YANG H Y, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology, 2000,118(4):705-713.
[18] WEINSHILBOUM R M, SLADEK S L. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet, 1980,32(5):651-662.
[19] KIM H Y, LEE S H, LEE M N, et al. Complete sequence-based screening of TPMT variants in the Korean population. Pharmacogenet Genomics, 2015,25(3):143-146.
[20] KONIDARI A, ANAGNOSTOPOULOS A, BONNETT L J, et al. Thiopurine monitoring in children with inflammatory bowel disease: a systematic review. Br J Clin Pharmacol, 2014,78(3):467-476.
[21] WONG D R, COENEN M J, DERIJKS L J, et al. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease. Aliment Pharmacol Ther, 2017,45(3):391-402.
[22] FAKHOURY M, DE BEAUMAIS T, MDARD Y, et al. Therapeutic drug monitoring of 6-thioguanine nucleotides in paediatric acute lymphoblastic leukaemia: interest and limits. Therapie, 2010,65(3):187-193.
[23] DHALIWAL H K, ANDERSON R, THORNHILL E L, et al. Clinical significance of azathioprine metabolites for the maintenance of remission in autoimmune hepatitis. Hepatology, 2012,56(4):1401-1408.

基金

国家自然科学基金面上项目资助(81874326);
湖北省自然科学基金面上项目资助(2017CFB761);
国家重点研发计划资助(2017YFC0909900)
PDF(1617 KB)

Accesses

Citation

Detail

段落导航
相关文章

/