淫羊藿苷对UMR-106成骨细胞和RAW264.7细胞诱导的破骨细胞蛋白质组学的影响

沈燚, 祝峥, 张奇, 何玉琼, 吴岩斌, 张巧艳

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (4) : 268-273.

PDF(1697 KB)
PDF(1697 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (4) : 268-273. DOI: 10.11669/cpj.2019.04.004
论著

淫羊藿苷对UMR-106成骨细胞和RAW264.7细胞诱导的破骨细胞蛋白质组学的影响

  • 沈燚1,3, 祝峥2, 张奇1,3, 何玉琼3, 吴岩斌1*, 张巧艳1,3*
作者信息 +

Effects of Icariin on Proteomics of Osteoblastic UMR-106 and Osteoclasts Induced from RAW264.7 Cells

  • SHEN Yi1,3, ZHU Zheng2, ZHANG Qi1,3, HE Yu-qiong3, WU Yan-bin1*, ZHANG Qiao-yan1,3*
Author information +
文章历史 +

摘要

目的 研究淫羊藿苷基于成骨细胞和破骨细胞蛋白质组学的抗骨质疏松作用机制。方法 四甲基偶氮唑蓝(MTT)法测定细胞的增殖,ELISA法测定碱性磷酸酶(ALP)和抗酒石酸酸性磷酸酶(TRAP)的活性,茜素红染色观察成骨细胞骨矿化结节的形成,以骨片上形成的骨吸收陷窝的数目和面积表征破骨细胞的骨吸收活性,以二维凝胶电泳观察成骨及破骨细胞蛋白质组的变化,应用TOF/MS/MS对差异表达的蛋白进行鉴定。结果 淫羊藿苷显著增加成骨细胞的骨形成,抑制破骨细胞的骨吸收,上调或下调成骨和破骨细胞各9个蛋白的表达。结论 淫羊藿苷通过参与能量代谢、氧化应激、嘌呤合成和细胞生长分化的等生物学过程调控骨代谢。

Abstract

OBJECTIVE To explore the anti-osteoporotic mechanism of icariin based on osteoblast and osteoclast proteomics. METHODS The cell proliferation was determined by MTT assay. The activity of alkaline phosphatase (ALP) in osteoblasts and tartrate-resistant acid phosphatase (TRAP) in osteoclast were measured using ELISA kit. Alizarin red staining was used to observe the formation of bone mineralized nodules in osteoblasts. The number and area of bone resorption pit formed on bone slices by osteoclasts were used to characterize the activity of osteoclastic bone resorption. Two-dimensional gel electrophoresis was used to observe the changes of icariin-treated osteoblast and osteoclast proteomics. TOF/MS/MS analysis was applied to identify the differentially expressed proteins. RESULTS Icariin significantly enhanced the osteoblastic bone formation and inhibited the osteoclastic bone resorption, and up-regulated or down-regulated expression of nine proteins in osteoblast and osteoclast, respectively. CONCLUSION Icariin regulates bone metabolism through involving multiple biological process, including energy metabolism, oxidative stress, purine synthesis and cell growth and differentiation.

关键词

淫羊藿苷 / 成骨细胞 / 破骨细胞 / 蛋白质组学 / 差异蛋白

Key words

icariin / osteoblasts / osteoclast / proteomics / differential proteins

引用本文

导出引用
沈燚, 祝峥, 张奇, 何玉琼, 吴岩斌, 张巧艳. 淫羊藿苷对UMR-106成骨细胞和RAW264.7细胞诱导的破骨细胞蛋白质组学的影响[J]. 中国药学杂志, 2019, 54(4): 268-273 https://doi.org/10.11669/cpj.2019.04.004
SHEN Yi, ZHU Zheng, ZHANG Qi, HE Yu-qiong, WU Yan-bin, ZHANG Qiao-yan. Effects of Icariin on Proteomics of Osteoblastic UMR-106 and Osteoclasts Induced from RAW264.7 Cells[J]. Chinese Pharmaceutical Journal, 2019, 54(4): 268-273 https://doi.org/10.11669/cpj.2019.04.004
中图分类号: R965   

参考文献

[1] ZHANG H W, REEKER R, LEE W P, et al. Proteomies in bone research. Expeat Rev Proteomics, 2010, 7(1): 103-111.
[2] WANG T, HU J, HAN L. Preclinical pharmacodynamic evaluation of new chinese drugs for osteoporosis. China J Chin Mater Med(中国中药杂志), 2006, 31(19): 1655-1656.
[3] WANG Z, WANG D, YANG D, et al. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int, 2018, 29(3):535-544.
[4] CHEN M, HAO J, YANG Q, et al. Effects of icariin on reproductive functions in male rats. Molecules, 2014, 19(7):9502-9514.
[5] LI C R, LI Q, MEI Q B,et al. Pharmacological effects and pharmacokinetic properties of icariin,the major bioactive component in Herba Epimedii. Life Sci, 2015,126:57-68.
[6] ANNA M, MAGDA G I, UMBERTO T, et al. Effects of microgravity onosteoblast mitochondria: aproteomic and metabolomics profile. Sci Reports, 2017,7(1):15376. DOI:10.1038/s41598-017-15612-1.
[7] MARTIAL B D, GABRIEL C S, SUZANNE F, et al. The last Enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the golgi/endosomes protein network. Mol Cell Proteomics, 2015, 14(4):1079-1092.
[8] ANDREI M M, SVETLANA A M, ZHANG Y N, et al. CArG binding factor A (CBF-A) is involved in transcriptional regulation of the rat Ha-ras promoter. Nucleic Acids Res, 2000, 28(19):3762-3770.
[9] LIU J, ZHANG S C, LI L. A transferrin-like homolog in amphioxus Branchiostoma belcheri: identification, expression and functional characterization. Mol Immunol, 2009,46(15): 3117-3124.
[10] DU J, FENG W, SUN J. Ovariectomy upregulated the expression of peroxiredoxin 1 & 5 in osteoblasts of mice. Sci Reports,2016,6:35995. DOI: 10.1038/srep35995.
[11] GIOVANNA L, ASMA N. Annexin A1: shifting the balance towards resolution and repair. Biol Chem, 2016, 397(10): 971-979.
[12] GABRIELA P P, KARINA R L, DIEGO B, et al. Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase. Comput Biol Chem, 2015, 58:1-8.
[13] WU D, WU Z D, YU X B. Advance in the research of phosphoglycerate kinase. China Tropic Med (中国热带医学), 2005, 5(2): 385-388.
[14] PAUL A P, JEFFERY M C, MATTHEW K W. Bone origin of the serum complex of calcium, phosphate, fetuin, and matrix Gla protein: biochemical evidence for the cancellous bone-remodeling compartment. J Bone Miner Res, 2002, 17(7):1171-1179.
[15] WANG W T, LI J Y. HSPA5 research progress. Chin Foreign Med Res(中外医学研究), 2010, 8(8): 26-29.
[16] ALESSANDRO M, LUIGIA D F, ACHILLE I, et al. The interplay between peroxiredoxin-2 and nuclear factor-erythroid 2 is important in limiting oxidative mediated dysfunction in β-thalassemic erythropoiesis. Antioxid Redox Signal, 2015,23(16):1284-1297.

基金

国家自然科学基金项目资助(90709023)
PDF(1697 KB)

197

Accesses

0

Citation

Detail

段落导航
相关文章

/