目的 制备卵巢癌靶向光疗剂白蛋白纳米结合物,对其肿瘤靶向性与抗肿瘤作用进行考察。方法 采用激光共聚焦显微镜、流式细胞术和溶酶体标记观察纳米结合物的细胞摄取及机制,通过Alamar Blue法和Calcein AM/PI染色考察其细胞毒作用,通过观察活性氧的生成和细胞凋亡考察纳米结合物的抗肿瘤机制。构建SKOV-3-NIH-3T3/GFP肿瘤球模型观察纳米结合物的肿瘤靶向性。结果 cRGD-PEG-HSA-IR700在整合素过表达的SKOV-3细胞的摄取为PEG-HSA-IR700的4.8倍,摄取后主要分布于溶酶体,两者在整合素不表达的NIH-3T3细胞摄取均较少。在考察浓度范围内,游离IR700、PEG-HSA-IR700与cRGD-PEG-HSA-IR700未光照组均未见细胞毒性,而cRGD-PEG-HSA-IR700光照组细胞毒作用明显,这是由于光照引起细胞内活性氧的生成以及诱导细胞凋亡的发生。结论 该白蛋白纳米结合物具有肿瘤特异性,有望成为肿瘤靶向光动力学治疗的药物传递新平台。
Abstract
OBJECTIVE To prepare ovarian cancer targeted photosensitizer albumin nanoconjugates, and investigate their tumor-targeting ability and antitumor response. METHODS The intracellular uptake and uptake mechanism were investigated by confocal laser scanning microscope, flow cytometry and lysosome labeling. The cytotoxicity was detected by Alamar Blue and Calcein AM/PI staining. The antitumor mechanism of cRGD-PEG-HSA-IR700 was investigated by observing the generation of reactive oxygen species(ROS) and apoptosis. The tumor targeting ability of nanoconjugates was observed by constructing SKOV-3-NIH-3T3/GFP spheroids. RESULTS The intracellular uptake of cRGD-PEG-HSA-IR700 in integrin overexpressed SKOV-3 cells was 3.8 fold higher than that of PEG-HSA-IR700, and cRGD-PEG-HSA-IR700 mainly distributed in lysosomes after uptake, where as the uptake of PEG-HSA-IR700 and cRGD-PEG-HSA-IR700 in integrin free NIH-3T3 cells was little.No photokilling effect was observed in the IR700, PEG-HSA-IR700 and cRGD-PEG-HSA-IR700 without light irradiation groups, while remarkable cytotoxicity was shown in the cRGD-PEG-HSA-IR700 with light irradiation group owing to the light-induced intracellular ROS generation and apoptosis.CONCLUSION The tumor-specific nanoconjugates may become a new drug delivery platform for enabling targeted photodynamic therapy of cancer.
关键词
光动力学疗法 /
卵巢癌靶向 /
白蛋白纳米结合物 /
抗肿瘤
{{custom_keyword}} /
Key words
photodynamic therapy /
ovarian cancer target /
albumin nanoconjugate /
anti-tumor
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHI Z, REN W, GONG A, et al. Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy[J]. Biomaterials, 2014, 35(25):7058-7067.
[2] O′CONNOR A E, GALLAGHER W M, BYRNE A T. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy[J]. Photochem Photobiol, 2009, 85(5):1053-1074.
[3] CALIXTO G M, BERNEGOSSI J, DE FREITAS L M, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review[J]. Molecules, 2016, 21(3):342.
[4] HYNES R O. Integrins: bidirectional, allosteric signaling machines[J]. Cell, 2002,110(6):673-687.
[5] ULMASOV B, NEUSCHWANDER-TETRI B A, LAI J, et al. Inhibitors of arg-gly-asp-binding integrins reduce development of pancreatic fibrosis in mice[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4):499-518.
[6] MARELLI U K, RECHENMACHER F, SOBAHI T R, et al. Tumor Targeting via Integrin Ligands[J]. Front Oncol, 2013, 3:222.
[7] CHEN W C, HSU H P, LI C Y, et al. Cancer stem cell marker CD90 inhibits ovarian cancer formation via beta3 integrin[J]. Int J Oncol, 2016, 49(5):1881-1889.
[8] LIU Z, WANG F, CHEN X. Integrin targeted delivery of radiotherapeutics[J]. Theranostics, 2011, 1:201-210.
[9] HU H, LI D, LIU S, et al. Integrin alpha2beta1 targeted GdVO4:Euultrathin nanosheet for multimodal PET/MR imaging[J]. Biomaterials, 2014, 35(30):8649-8658.
[10] CHEN L, LIU Y, WANG W, et al. Effect of integrin receptor-targeted liposomal paclitaxel for hepatocellular carcinoma targeting and therapy[J]. Oncol Lett, 2015, 10(1):77-84.
[11] KUDARHA R R, SAWANT K K. Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches[J]. Mater Sci Eng C Mater Biol Appl, 2017, 81:607-626.
[12] LI F, ZHAO Y, MAO C, et al. RGD-Modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer[J]. Mol Pharm, 2017, 14(8):2793-2804.
[13] KIM S A, LEE E K, KUH H J. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro[J]. Exp Cell Res, 2015, 335(2):187-196.
[14] MINCHINTON A I, TANNOCK I F. Drug penetration in solid tumours[J]. Nat Rev Cancer, 2006, 6(8):583-592.
[15] MURO S. Challenges in design and characterization of ligand-targeted drug delivery systems[J]. J Controlled Release, 2012, 164(2):125-137.
[16] MONTET X, FUNOVICS M, MONTET-ABOU K, et al. Multivalent effects of RGD peptides obtained by nanoparticle display[J]. J Med Chem, 2006, 49(20):6087-6093.
[17] AGOSTINIS P, BERG K, CENGEL K A, et al. Photodynamic therapy of cancer: an update[J]. CA Cancer J Clin, 2011, 61(4):250-281.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
江苏省高校自然科学面上项目资助(17KJB350015);盐城市医学科技发展计划项目资助(YK2017051);江苏省卫生职业技术教育研究课题资助(J201704);江苏省大学生创新计划项目资助(201712682015X);江苏医药职业学院科技创新团队项目资助(20188103)
{{custom_fund}}