目的 检测分析重组人促红素(rhEPO)各异构体唾液酸化程度。方法 用全柱成像毛细管等电聚焦电泳检测rhEPO原液的异构体等电点并计算分析异构体上电荷分布规律;用《中国药典》三部附录方法测定rhEPO总唾液酸化程度,再用多元线性回归拟合分析rhEPO各异构体的唾液酸化程度。结果 在等电点3.6~5.1内定义并区分各异构体1~9,分析结果显示,相邻异构体唾液酸化程度相差1唾液酸分子。主要4个异构体(4~7)唾液酸化程度分别为13、12、11和10(mol/mol)。结论 为rhEPO生物相似性评价提供支持,也为进一步解析rhEPO各异构体唾液酸组成形式分析奠定基础。
Abstract
OBJECTIVE To detect and analyze the degree of salivary acidification of rhEPO isoforms. METHODS The isoelectric points of rhEPO isoforms were determined with full column imaging capillary isoelectric focusing electrophoresis. And the charge distribution among rhEPO isoforms was analyzed. The degrees of rhEPO's total saliva acidification were measured using the method of appendices of Chinese Pharmacopoeia. At last, the degrees of saliva acidification of rhEPO isoforms were obtained using multivariate linear fitting. RESULTS Nine kinds of rhEPO isoforms were distinguished and defined as isoform 1 to 9 with isoelectric points in the range of 3.6 to 5.1. There was one sialic acid molecule between two contiguous rhEPO isoform. Furthermore, the degrees of salivary acidification of the main four kinds of isoforms, 4-7, were 13, 12, 11 and 10 mol/mol, respectively. CONCLUSION This study lays foundation for rhEPO biosimilar evaluation and further analysis of each isoform of rhEPO.
关键词
重组人红细胞生成素 /
异构体 /
等电点 /
唾液酸 /
蛋白质构象
{{custom_keyword}} /
Key words
recombinant human erythropoietin /
isoform /
isoelectric point /
sialic acid /
protein conformation
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIN F K, SUGGS S, LIN C H, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA,1985, 82(22):7580-7584.
[2] LAI P H, EVERETT R, WANG F F, et al. Structural characterization of human erythropoietin. J Biol Chem, 1986,261(7):3116-3121.
[3] JIANG J, TIAN F, CAI Y, et al. Site-specific qualitative and quantitative analysis of N-and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem, 2014,406(25):6265-6274.
[4] CHEN X, VARKI A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol, 2010,5(2):163-176.
[5] CREAMER J S, OBORNY N J, LUNTE S M. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. Anal Methods,2014,6(15):5427-5449.
[6] WEI D X, JIANG L Z, WANG C, et al. Research progress on biological activity of sialic acid and its application. Food Nutr China(中国食物与营养),2011, 17(7):64-68.
[7] ZENG Z Q. Organic Chemistry(有机化学). Vol 4. Beijing:Higher Education Press,2004:124-165.
[8] WANG Z M. Atomic Molecules and Laser Technology in the Light Field(光场中的原子分子及激光技术). Beijing:Science Press,2012:41-53.
[9] SUNG S S. Dielectric screening effect of electronic polarization and intramolecular hydrogen bonding. Protein Sci,2017,26(10):2003-2009.
[10] BYWATER R P. A tensegrity model for hydrogen bond networks in proteins. Heliyon, 2017,3(5):e00307. doi:10.1016/j.heliyon.2017.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家科技重大专项“生物类似药物质量相似性评价体系建设研究(2015ZX09501008-001)”项目资助
{{custom_fund}}