目的 制备两亲性的载田蓟苷纳米胶束,研究其体外释药特性及协同提高其体外抗H9c2细胞凋亡的活性。方法 以两亲性二嵌段PEG-PPS聚合物为载体材料,通过溶剂挥发法制备载田蓟苷的氧化响应型纳米胶束,并对其形态、粒径分布及体外释放进行表征。采用缺氧/复氧制备H9c2大鼠心肌细胞的损伤模型,以普萘洛尔(Pro)为阳性对照,通过对受损心肌细胞形态学观测、细胞增殖及细胞相对凋亡情况的检测,评价空白胶束,田蓟苷及载田蓟苷纳米胶束对缺氧/复氧诱导H9c2细胞损伤的保护作用。结果 载田蓟苷的纳米胶束外观为球形,粒径分布均匀。载药为3.82%田蓟苷纳米胶束的平均粒径为137 nm,多分散系数为0.162,包封率为91.45%。体外释药研究表明,载田蓟苷纳米胶束无药物突释现象,具有缓释特性,且过氧化氢的存在显著地促进了田蓟苷从纳米胶束中的释放。体外细胞毒性实验表明,当田蓟苷浓度为5 μg·mL-1时,载田蓟苷纳米胶束的细胞存活率显著高于相应浓度的田蓟苷和PEG-PPS聚合物纳米胶束。体外抗凋亡活性实验研究表明,载田蓟苷纳米胶束对缺氧/复氧诱导H9c2细胞的凋亡具有明显的抑制作用,具有与普萘洛尔相似的抑制凋亡作用。结论 载田蓟苷纳米胶束具有均匀的粒径及分布,缓释和氧化特性,对缺氧/复氧诱导的H9c2细胞损伤具有显著的保护和抑制凋亡作用,可作为一种有前景的纳米药物输送系统应用于心肌缺血再灌注损伤的治疗。
Abstract
OBJECTIVE To prepare nano-micelles with amphiphilic self-assembly poly (ethylene glycol)-co-poly (propylene sulfide) (PEG-PPS) copolymer as carrier to study the release characteristics of tilianin and investigate its activity to against H9c2 cell apoptosis in vitro. METHODS An amphiphilic diblock PEG-PPS polymer was used as a carrier material to prepare the tilianin-containing nano-micelles by solvent evaporation. The morphology, particle size and distribution, drug loading and encapsulation rate and in vitro drug release behavior were characterized, H9c2 rat myocardial cell injury model was established by hypoxia/reoxygenation process. Using propranolol (Pro) as a positive control, the morphology of injured cardiomyocytes was observed by microscope. Cell proliferation and cell apoptosis was detected to evaluate the protective effect of blank micelles, tilianin and tilianin loaded nano-micelles on H9c2 cells induced by hypoxia/reoxygenation. RESULTS Tilianin-loaded nano-micelles was spherical with uniform particle size distribution. The drug loading was 3.82%. The average particle diameter of tilianin-loaded nano-micelles was 137 nm, polydispersity coefficient was 0.162 and the encapsulation efficiency was 91.45%. In vitro drug release studies showed that there was no drug-induced burst release of tilianin-containing nano-micelles and sustained release characteristics, and the presence of hydrogen peroxide significantly promoted the release of tilianin from the nano-micelles. In vitro cytotoxicity experiments showed that when the concentration of tilianin 5 μg·mL-1, the cell viability of tilianin-loaded nano-micelles was significantly higher than the corresponding concentration of tilianin and PEG-PPS polymer nano-micelles. In vitro anti-apoptotic activity experiments show that tilianin-loaded nano-micelles on H9c2 cell apoptosis induced by hypoxia-reoxygenation have a significant inhibitory effect and was provided inhibition of apoptosis with propranolol. CONCLUSION Tilianin-loaded nano-micelles have uniform particle size and distribution, sustained release and oxidation characteristics, has a significant protective and apoptosis-inhibiting effect on H9c2 cell injury induced by hypoxia-reoxygenation, which can be used as a promising drug delivery system for the treatment of myocardial ischemia-reperfusion injury.
关键词
PEG-PPS聚合物胶束 /
田蓟苷 /
缺氧/复氧 /
H9c2细胞 /
细胞凋亡
{{custom_keyword}} /
Key words
PEG-PPS polymer micelle /
tilianin /
hypoxia/reoxygenation /
H9c2 cell /
apoptosis
{{custom_keyword}} /
中图分类号:
R944
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KOTTENBERG E, THIELMANN M, BERGMANN L, et al. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol-a clinical trial[J]. Acta Anaesthesiol Scand, 2012, 56 (1):30-38.
[2] BENSTOEM C, GOETZENICH A, KRAEMER S, et al. Selenium and its supplementation in cardiovascular disease-what do we know[J]. Nutrients, 2015, 7(5):3094-3118.
[3] MADATHIL R J, HIRA R S, STOECKL M, et al. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation[J]. Resuscitation, 2016, 105(4):85-91.
[4] GARCIA-LAFUENTE A, GUILLAMON E, VILLARES A, et al. Flavonoids as anti-inflammatory agents:implications in cancer and cardiovascular disease[J]. Inflamm Res, 2009, 58(9):537-552.
[5] EGERT S, BOSY-WESTPHAL A, SEIBERL J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype:a double-blinded, placebo-controlled cross-over study[J]. Br J Nutri, 2009, 102 (7):1065-1074.
[6] PARHIZ H, ROOHBAKHSH A, SOLTANI F, et al. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin:an updated review of their molecular mechanisms and experimental models[J]. Phytother Res, 2015, 29(3):323-331.
[7] FAN X M, CAO W J, XING J G, et al. Protective effect of total flavones from Dracocephalum moldavica aganist myocardial ischemia-reperfusion injury in rats[J]. Chin Tradit Pat Med(中成药), 2013, 35(8):1625-1629.
[8] CAO W J, YUAN Y, WANG X C, et al. Ameliorated effect of dracocephalum total flavones on experimental atherosclerosis in rats[J]. Chin J Hosp Pham(中国医院药学杂志), 2013,33(19):1570-1572.
[9] WANG L, HU P, TIRELLI N. Amphiphilic star block copolymers: influence of branching on lyotropic/interfacial properties[J]. Polymer, 2009, 50 (13):2863-2873.
[10] WANG Y S, WANG Y M, LI R S, et al. Novel chitosan-based self-assembled nanomicelles paclitaxel drug release vehicle[J]. Chem J Chin Univ(高等学校化学学报), 2008,29(5):1065-1069.
[11] GUO X H, CAO W J, YUAN Y, et al. Cardioprotective effects of tilianin in rat myocardial ischemia-reperfusion injury[J]. Mol Med Rep, 2015, 11(3):2227-2233.
[12] YUAN Y, CAO W J, HONG Y, et al. Tilianin pretreatment prevents myocardial ischemia-reperfusion injury via preservation of mitochondrial function in rat heart[J]. Phytomedicine, 2017, 34(17):106-114.
[13] WANG Y, YUAN Y, WANG X C, et al. Tilianin post-conditioning attenuates myocardial ischemia/reperfusion injury via mitochondrial protection and inhibition of apoptosis[J]. Med Sci Monit, 2017, 23(9):4490-4499.
[14] VELLUTO D, DEMURTAS D, HUBBELL J A. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release:cyclosporin A as an example[J]. Mol Pharm, 2008, 5 (4):632-642.
[15] HUO M, YUAN J, TAO L, et al. Redox-responsive polymers for drug delivery:from molecular design to applications[J]. Polymer Chem, 2014, 5(5):1519-1528.
[16] TANG Z, HE C, TIAN H, et al. Polymeric nanostructured materials for biomedical applications[J]. Prog Polymer Sci, 2016, 60(16):86-128.
[17] TANG M, HU P, ZHENG Q, et al. Polymeric micelles with dual thermal and reactive oxygen species (ROS)-responsiveness for inflammatory cancer cell delivery[J]. J Nanobiotechnol, 2017, 15(1):1-11.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(81460638,81660704)
{{custom_fund}}