微针透皮递药系统研究进展

鲁洋, 程祝强, 金毅, 丁智

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (12) : 945-950.

PDF(1370 KB)
PDF(1370 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (12) : 945-950. DOI: 10.11669/cpj.2018.12.001
·综述·

微针透皮递药系统研究进展

  • 鲁洋1, 程祝强2, 金毅2*, 丁智1,3*
作者信息 +

Research Updates on Microneedle-Based Transdermal Drug Delivery Systems

  • LU Yang1, CHENG Zhu-qiang2, JIN Yi2*, DING Zhi1,3*
Author information +
文章历史 +

摘要

微针透皮给药系统是指利用微针穿刺皮肤角质层形成微小孔道,无痛或微痛地促进药物经皮渗透的一种给药策略。微针给药技术作为一种新型的透皮给药方式,与单独使用透皮制剂相比,可以显著提高药物透皮吸收的效率,扩大经皮递药适用的药品种类,促进水溶性药物的透皮吸收和提高大分子药物透皮的能力,使药物在体内更好地发挥作用。微针技术在透皮给药领域发展迅速,笔者通过对近年来国内外微针技术应用于透皮递药方面的代表性文献进行归纳总结,将微针技术在透皮递药领域的最新进展呈现给读者。

Abstract

Microneedle-based transdermal drug delivery system refers to the use of microneedles piercing the stratum corneum of the skin to form tiny pores, through which drug absorption via the skin is enhanced with minimal pain sensation. As a novel drug delivery method, the microneedle technology can significantly improve the transdermal absorption efficiency of the drugs, especially hydrophilic drugs, as compared with using transdermal drug formulations alone. Thus the scope of applicable drugs for transdermal delivery are remarkably enlarged, the efficacy and bioavailability improved as well. Microneedle technology has developed rapidly in the field of transdermal drug delivery. In this paper, the recent representative literature on microneedle-aided transdermal drug administration home and abroad to present the latest progress in this field that was summarized.

关键词

微针 / 透皮递药 / 疫苗

Key words

microneedle / transdermal drug delivery / vaccine

引用本文

导出引用
鲁洋, 程祝强, 金毅, 丁智. 微针透皮递药系统研究进展[J]. 中国药学杂志, 2018, 53(12): 945-950 https://doi.org/10.11669/cpj.2018.12.001
LU Yang, CHENG Zhu-qiang, JIN Yi, DING Zhi. Research Updates on Microneedle-Based Transdermal Drug Delivery Systems[J]. Chinese Pharmaceutical Journal, 2018, 53(12): 945-950 https://doi.org/10.11669/cpj.2018.12.001
中图分类号: R944   

参考文献


[1] BIAN J M, ZENG M, XU J F. Research progress of microneedles in transdermal drug delivery[J]. Chin Pharm J(中国药学杂志), 2006, 41(16):1209-1211.
[2] HENRY S, MCALLISTER D V, ALLEN M G, et al. Microfabricated microneedles:a novel approach to transdermal drug delivery[J]. J Pharm Sci, 1998, 87(8):922-925.
[3] MAADEN K V D, JISKOOT W, BOUWSTRA J. Microneedle technologies for (trans)dermal drug and vaccine delivery[J]. J Controlled Release, 2012, 161(2):645-655.
[4] BAL S M, DING Z, RIET E V, et al. Advances in transcutaneous vaccine delivery:do all ways lead to Rome?[J]. J Controlled Release, 2010, 148(3):266-282.
[5] HARDING C R. The stratum corneum:structure and function in health and disease[J]. Dermatol Ther, 2004, 17(suppl 1):6-15.
[6] BOUWSTRA J A, PONEC M. The skin barrier in healthy and diseased state[J]. Biochim Biophys Acta, 2006, 1758(12):2080-2095.
[7] HUZIL J T, SIVALOGANATHAN S, KOHANDEL M, et al. Drug delivery through the skin:molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2011, 3(5):449-462.
[8] KANITAKIS J. Anatomy, histology and immunohistochemistry of normal human skin[J]. Eur J Dermatol, 2002, 12(4):390-399.
[9] DONNELLY R F, RAJ SINGH T R, WOOLFSON A D. Microneedle-based drug delivery systems:microfabrication, drug delivery, and safety[J]. Drug Deliv, 2010, 17(4):187-207.
[10] CHEN J, CHEN Z P, QU M M, et al. Application of microneedle technology in transdermal drug delivery[J]. Int J Pharm Res(国际药学研究杂志), 2011, 38(2):142-147.
[11] WAN Z, ZHOU J, HAN M N, et al. Research progress of application of microneedle transdermal drug delivery system[J]. J Pharm Pract(药学实践杂志), 2012, 30(2):86-88.
[12] NAGUIB Y W, AMIT K, CUI Z. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil[J]. Acta Pharm Sin B(药学学报英文), 2014, 4(1):94-99.
[13] LI C G, LEE C Y, LEE K, et al. An optimized hollow microneedle for minimally invasive blood extraction[J]. Biomed Microdev, 2013, 15(1):17-25.
[14] NANDAGOPAL M S G, ANTONY R, RANGABHASHIYAM S, et al. Overview of microneedle system:a third generation transdermal drug delivery approach[J]. Microsys Technol, 2014, 20(7):1249-1272.
[15] CHEN M C, LING M H, KUSUMA S J. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin[J]. Acta Biomater, 2015, 24(15):106-116.
[16] HIROBE S, AZUKIZAWA H, HANAFUSA T, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch[J]. Biomaterials, 2015, 57:50-58.
[17] JIN T. Phase inversion polymer microneedles:China, CN102202720A[P]. 2011-09-28.
[18] DONNELLY R F, MORROW D I, MCCARRON P A, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid:potential for enhanced topical photodynamic therapy[J]. J Controlled Release, 2008, 129(3):154-162.
[19] QUINN H L, BONHAM L, HUGHES C M, et al. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs[J]. J Pharm Sci, 2015, 104(10):3490-3500.
[20] BAEK S H, SHIN J H, KIM Y C. Drug-coated microneedles for rapid and painless local anesthesia[J]. Biomed Microdev, 2017, 19(1):2-12.
[21] ZHAO X, COULMAN S A, HANNA S J, et al. Formulation of hydrophobic peptides for skin delivery via coated microneedles[J]. J Controlled Release, 2017, 265:2-23.
[22] SEONG K Y, SEO M S, HWANG D Y, et al. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin[J]. J Controlled Release, 2017,265:48-56.
[23] YANG S, WU F, LIU J, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin[J]. Adv Funct Mater, 2015, 25(29):4633-4641.
[24] YU J, ZHANG Y, YE Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery[J]. Proc Natl Acad Sci USA, 2015, 112(27):8260-8265.
[25] XU T, WEI M Y, DENG L H, et al. Research progress of transcutaneous immunity[J]. Chin Pharm J(中国药学杂志), 2010, 45(24):1895-1899.
[26] EDENS C, COLLINS M L, GOODSON J L, et al. A microneedle patch containing measles vaccine is immunogenic in non-human primates[J]. Vaccine, 2015, 33(37):4712-4718.
[27] BEALS C R, RAILKAR R A, SCHAEFFER A K, et al. Immune response and reactogenicity of intradermal administration versus subcutaneous administration of varicella-zoster virus vaccine:an exploratory, randomised, partly blinded trial[J]. Lancet Infect Dis, 2016, 16(8):915-922.
[28] CHU L Y, YE L, DONG K, et al. Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches[J]. Pharm Res, 2016, 33(4):868-878.
[29] KIM Y C, LEE S H, CHOI W H, et al. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection[J]. J Drug Target, 2016, 24(10):943-951.
[30] KIM E, ERDOS G, HUANG S, et al. Preventative vaccines for zika virus outbreak:preliminary evaluation[J]. Ebio Med, 2016, 13:315-320.
[31] WELDON W C, ZARNITSYN V G, EESSER E S, et al. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine[J]. PLoS One, 2012, 7(7):e41501.
[32] YANG H, YE L, GUO X D, et al. Ebola vaccination using a dna vaccine coated on plga-pll/γpga nanoparticles administered using a microneedle patch[J]. Adv Healthc Mater, 2017, 6(1):1600750.
[33] ARYA J M, DEWITT K, SCOTT-GARRARD M, et al. Rabies vaccination in dogs using a dissolving microneedle patch[J]. J Controlled Release, 2016, 239:19-26.
[34] ROSEMARIE L, FETCHICK D A, MORRIS T L, et al. Use of V-Go® insulin delivery device in patients with sub-optimally controlled diabetes mellitus:a retrospective analysis from a large specialized diabetes system[J]. Diab Ther, 2015, 6(4):531-545.
[35] LAJARA R, DAVIDSON J A, NIKKEL C C, et al. Clinical and cost effectiveness of insulin delivery with V-Go® disposable insulin delivery device versus multiple daily injections in patients with type 2 diabetes inadequately controlled on basal insulin[J]. Endoc Pract, 2016, 22(6):726-735.

基金

中央军委后勤保障部卫生局军事医学创新工程项目资助(CNJ16J009);江苏省自然科学基金面上项目资助(BK20161478)
PDF(1370 KB)

350

Accesses

0

Citation

Detail

段落导航
相关文章

/