OBJECTIVE To study the secondary metabolites of endophytic fungus Aspergillus TQ67 isolated from Suaeda glauca. METHODS The compounds were isolated and purified by ODS reversed-phase column, preparative HPLC and HPLC techniques.And their structures were identified by the physicochemical properties and spectral analysis. RESULTS The compounds were identified as aspermutarubrol (1), sydowiols D (2), sydowiol E (3), L-tenuazonic acid (4), (E)-5-(hydroxymethyl)-2-(6′-methylhept-2′-en-2′-yl)phenol (5), sydonol (6), (7S)-(+)-7-O-methylsydonol (7), and hydroxysydonic acid (8). Compounds 2/3 and compound 1 were different from other compounds with IC50 values of (9.79±0.33) and (32.30±1.02) μg·mL-1 by DPPH assay and (230.55±2.50) and (278.99±8.32) μg·mL-1 by FRAP assay, respectively. CONCLUSION Compounds 2/3 and compound 1 isolated from endophytic fungus Aspergillus TQ67 isolated from Suaeda glauca show strong antioxidant activity.
STONE J K, BACON C W, WHITE J F. An Overview of Endophytic Microbes:Endophytism Defined[M]. Vol 3. New York:Marcel Dekker, 2000:267-274.
[2]
ZHOU W X, TAN R X. Recent advances on endophyte research[J]. Acta Botanica Sin(ֲ��ѧ��), 2001, 43(9): 881-892.
[3]
LI Y, LIU Z R, WU Q Q, et al. Fermented TCM,to open a new field of TCM research and development[J]. Nat Prod Res Dev(��Ȼ�����о��뿪��), 2004, 16(2): 179-181.
[4]
ZHAO X S, SHI R, LI Y. Antioxidation and antibacterial property of flavonoids compounds extracted from Suaeda[J]. Sci Technol Food Ind(ʳƷ��ҵ�Ƽ�), 2016, 37(13): 63-66,71.
[5]
WANG Q Z, ZHOU D S, WANG M, et al. Chemical constituents of Suaeda salsa and their cytoxtoxic activity[J]. Chem Nat Comp, 2014, 50(3): 531-533.
[6]
MENSOR L L, MENEZES F S, LEITAO G G, et al. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method[J]. Phytother Res, 2001,15(2):127-130.
[7]
BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP)as a measure of ‘antioxidant power′: the FRAP assay[J]. Anal Biochem, 1996,239(1): 70-76.
[8]
LI X B, ZHOU Y H, ZHU R X, et al. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor[J]. Chem Biodive, 2015, 12(4): 575-592.
[9]
SHIBATA K, KAMIKAWA T, KANEDA N, et al. A new metabolite, aspermutarubrol, from Aspergillus sydowii[J]. Chem Lett, 1978, 7(7): 797-798.
[10]
SUN J Y, AAWKAWA T, NOGUCHI H, et al. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L[J]. Bioorg Med Chem Lett, 2012, 22(20): 6397-6400.
[11]
SUMARAH M W, KESTING J R, SØRENSEN D, et al. Antifungal metabolites from fungal endophytes of Pinus strobus[J]. Phytochemistry, 2011, 72(14-15): 1833-1837.
[12]
NUKINA M, SATO Y, IKEDA M, et al. Sydonol, a new fungal morphogenic substance produced by an Unidentified aspergillus sp[J]. Agric Biol Chem, 1981,45(3):789-790.
[13]
CHUNG Y M, WEI C K, CHUANG D W, et al. An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii[J]. Bioorg Med Chem, 2013, 21(13): 3866-3872.
[14]
TAKASHI H, KOUZOU N, YUICHI H. Two new metabolites, sydonic acid and hydroxysydonic acid, from Aspergillus sydowi[J]. Agric Biol Chem, 1978,42(1):37-40.