1. College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China; 2. Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
Abstract��Topical ocular medication is commonly used for eye diseases treatment.In view of low bioavailability and poor efficacy of traditional ocular preparations,the development of novel ocular drug delivery systems has become a great challenge in pharmaceutics.In recent years, nano preparations have been widely used for ocular drug delivery systems. At present, several nanocarriers, such as polymeric micelles, nanoparticles, nanosuspension, liposomes, emulsion, and dendritic polymers have been developed for ocular drug delivery.There are some other new dosage forms, such as in-situ gelling systems, implants, contact lenses, and microneedles are also under continuous research. The aim of development of these new dosage forms is to improve the drugs' ocular bioavailability and therapeutic effects.In this paper,the development in these areas in recent years are reviewed in order to provide reference for the development of new ocular drug delivery systems.
������, ��տ, ����. �۲���ҩ�¼���[J]. �й�ҩѧ��־, 2016, 51(23): 1993-1998.
SUN Ru-ru, TANG Zhan, WANG Qiao. New Dosage Forms for Ocular Administration. Chinese Pharmaceutical Journal, 2016, 51(23): 1993-1998.
ACHOURI D, ALHANOUT K, PICCERELLE P, et al. Recent advances in ocular drug delivery [J]. Drug Dev Ind Pharm, 2013, 39(11):1599-1617.
[2]
YELLEPEDDI V K, PALAKURTHI S. Recent advances in topical ocular drug delivery [J]. J Ocul Pharmacol Ther, 2016, 32(2):67-82.
[3]
PATEL S, GARAPATI C, CHOWDHURY P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application [J]. J Ocul Pharmacol Ther, 2015, 31(4):215-227.
[4]
LI X, ZHANG Z, LI J, et al. Diclofenac/biodegradable polymer micelles for ocular applications [J]. Nanoscale, 2012, 4(15):4667-4673.
[5]
VAISHYA R D, GOKULGANDHI M, PATEL S, et al. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis [J]. AAPS Pharm Sci Tech, 2014, 15(5):1238-1251.
[6]
VADLAPUDI A D, CHOLKAR K, VADLAPATLA R K, et al. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir:formulation development and ocular biocompatibility [J]. J Ocul Pharmacol Ther, 2014, 30(1):49-58.
[7]
SUK J S, XU Q, KIM N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery [J]. Adv Drug Deliv Rev, 2016, 99(PtA):28-51.
[8]
BHATTA R S, CHANDASANA H, CHHONKER Y S, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies [J]. Int J Pharm, 2012, 432(1-2):105-112.
[9]
ALQAWLAQ S, SIVAK J M, HUZIL J T, et al. Preclinical development and ocular biodistribution of gemini-DNA nanoparticles after intravitreal and topical administration:towards non-invasive glaucoma gene therapy [J]. Nanomedicine, 2014, 10(8):1637-1647.
[10]
KHAN M S, VISHAKANTE G D, BATHOOL A. Development and characterization of pilocarpine loaded eudragit nanosuspensions for ocular drug delivery [J]. J Biomed Nanotechnol, 2013, 9(1):124-131.
[11]
ALI H S, YORK P, ALI A M, et al. Hydrocortisone nanosuspensions for ophthalmic delivery:a comparative study between microfluidic nanoprecipitation and wet milling. [J]. J Controlled Release, 2011, 149(2):175-176.
[12]
MOKHTAR IBRAHIM M, TAWFIQUE S A, MAHDY M M. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma [J]. Drug Dev Ind Pharm, 2014, 40(6):765-773.
[13]
VICARIO-DE-LA-TORRE M, BENITEZ-DEL-CASTILLO J M, VICO E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film [J]. Invest Ophthalmol Vis Sci, 2014, 55(12):7839-7847.
[14]
AGARWAL R, IEZHITSA I, AGARWAL P, et al. Liposomes in topical ophthalmic drug delivery:an update [J]. Drug Deliv, 2016, 23(4):1075-1091.
[15]
LIN J, WU H, WANG Y, et al. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes [J]. Drug Deliv, 2016, 23(4):1144-1151.
[16]
USTUNDAG-OKUR N, GOKCE E H, EGRILMEZ S, et al. Novel ofloxacin-loaded microemulsion formulations for ocular delivery [J]. J Ocul Pharmacol Ther, 2014,30(4):319-332.
[17]
YING L, TAHARA K, TAKEUCHI H. Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration:effect of emulsion formulations and surface modification [J]. Int J Pharm, 2013, 453(2):329-335.
[18]
KALOMIRAKI M, THERMOS K, CHANIOTAKIS N A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications [J]. Int J Nanomed, 2016, 11:1-12.
[19]
YAO C, WANG W, ZHOU X, et al. Effects of poly(amidoamine) dendrimers on ocular absorption of puerarin using microdialysis [J]. J Ocul Pharmacol Ther, 2011, 27(6):565-569.
[20]
CHAPLOT S P, RUPENTHAL I D. Dendrimers for gene delivery--a potential approach for ocular therapy? [J]. J Pharm Pharmacol, 2014, 66(4):542-556.
[21]
IEZZI R, GURU B R, GLYBINA I V, et al. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration [J]. Biomaterials, 2012, 33(3):979-988.
[22]
SPATARO G, MALECAZE F, TURRIN C O, et al. Designing dendrimers for ocular drug delivery [J]. Eur J Med Chem, 2010, 45(1):326-334.
[23]
ALMEIDA H, AMARAL M H, LOBAO P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations:an overview [J]. Expert Opin Drug Deliv, 2013, 10(9):1223-1237.
[24]
HE W, GUO X, FENG M, et al. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels [J]. Int J Pharm, 2013, 458(2):305-314.
[25]
LUO Z, JIN L, XU L, et al. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium [J]. Drug Deliv, 2016, 23(1):63-68.
[26]
FAMILI A, KAHOOK M Y, PARK D. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system [J]. Macromol Biosci, 2014, 14(12):1719-1729.
[27]
JAISWAL M, KUMAR M, PATHAK K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis [J]. Colloids Surf B Biointerfaces, 2015, 130:23-30.
[28]
PATHAK M K, CHHABRA G, PATHAK K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole:ex-vivo transcorneal permeation, corneal toxicity and irritation testing [J]. Drug Dev Ind Pharm, 2013, 39(5):780-790.
[29]
YU S, WANG Q M, WANG X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate [J]. Int J Pharm, 2015, 480(1-2):128-136.
[30]
DUAN Y, CAI X, DU H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin [J]. Colloids Surf B Biointerfaces, 2015, 128:322-330.
[31]
ELSHAER A, GHATORA B, MUSTAFA S, et al. Contact lenses as drug reservoirs & delivery systems:the successes & challenges [J]. Ther Deliv, 2014, 5(10):1085-1100.
[32]
NASR F H, KHOEE S, DEHGHAN M M, et al. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery [J]. Biomacromolecules, 2016, 17(2):485-495.
[33]
TASHAKORI-SABZEVAR F, MOHAJERI S A. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses [J]. Drug Dev Ind Pharm, 2015, 41(5):703-713.
[34]
TIEPPO A, WHITE C J, PAINE A C, et al. Sustained in vivo release from imprinted therapeutic contact lenses [J]. J Controlled Release, 2012, 157(3):391-397.
[35]
LEE S S, HUGHES P, ROSS A D, et al. Biodegradable implants for sustained drug release in the eye [J]. Pharm Res, 2010, 27(10):2043-2053.
[36]
SOUZA M C, FIALHO S L, SOUZA P A, et al. Tacrolimus-loaded PLGA implants: in vivo release and ocular toxicity [J]. Curr Eye Res, 2014, 39(1):99-102.
[37]
PEHLIVAN S B, YAVUZ B, CALAMAK S, et al. Preparation and in vitro/in vivo evaluation of cyclosporin A-loaded nanodecorated ocular implants for subconjunctival application [J]. J Pharm Sci, 2015, 104(5):1709-1720.
[38]
PATEL S R, LIN A S, EDELHAUSER H F, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles [J]. Pharm Res, 2011, 28(1):166-176.
[39]
MAHADEVAN G, SHEARDOWN H, SELVAGANAPATHY P. PDMS embedded microneedles as a controlled release system for the eye [J]. J Biomater Appl, 2013, 28(1):20-27.
[40]
REIMONDEZ-TROITINO S, CSABA N, ALONSO M J, et al. Nanotherapies for the treatment of ocular diseases [J]. Eur J Pharm Biopharm, 2015, 95(Pt B):279-293.