线粒体自噬在心血管疾病中的作用及研究进展

卢颖, 潘磊, 林超, 吴祥, 孙鑫, 蒯美玉, 张启春, 卞慧敏

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (23) : 1989-1992.

PDF(582 KB)
PDF(582 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (23) : 1989-1992. DOI: 10.11669/cpj.2016.23.001
综述

线粒体自噬在心血管疾病中的作用及研究进展

  • 卢颖1, 潘磊3, 林超1, 吴祥1, 孙鑫1, 蒯美玉1, 张启春1,2, 卞慧敏1,2*
作者信息 +

Role and Research Progress of Mitophagy in Treating Cardiovascular Diseases

  • LU Ying1, PAN Lei3, LIN Chao1, WU Xiang1, SUN Xin1, KUAI Mei-yu1, ZHANG Qi-chun1,2, BIAN Hui-min1,2*
Author information +
文章历史 +

摘要

对近年来关于线粒体自噬在心血管疾病中的作用及相关机制研究做整理分析。正常情况下线粒体自噬能够维持细胞内线粒体功能的稳定性,从而确保心功能的正常运行。而线粒体自噬的异常与心血管疾病密切相关。线粒体自噬在防治心血管中具有重要作用,但其具体作用机制不明,有待进一步深入研究。

Abstract

The aim of the article is to analyze recent studies on the role of mitophagy in cardiovascular diseases and related mechanism. Under normal circumstances, mitophagy is able to maintain the stability of the mitochondrial function, thus ensuring the normal operation of cardiac function, while mitophagy abnormalities are closely associated with cardiovascular diseases. Mitophagy plays an important role in the prevention and treatment of cardiovascular diseases. But the complex mechanism of action needs further researchment.

关键词

线粒体自噬 / 心血管疾病 / 作用机制 / 信号通路

Key words

mitophagy / cardiovascular disease / mechanism / signaling pathway

引用本文

导出引用
卢颖, 潘磊, 林超, 吴祥, 孙鑫, 蒯美玉, 张启春, 卞慧敏. 线粒体自噬在心血管疾病中的作用及研究进展[J]. 中国药学杂志, 2016, 51(23): 1989-1992 https://doi.org/10.11669/cpj.2016.23.001
LU Ying, PAN Lei, LIN Chao, WU Xiang, SUN Xin, KUAI Mei-yu, ZHANG Qi-chun, BIAN Hui-min. Role and Research Progress of Mitophagy in Treating Cardiovascular Diseases[J]. Chinese Pharmaceutical Journal, 2016, 51(23): 1989-1992 https://doi.org/10.11669/cpj.2016.23.001
中图分类号: R965   

参考文献

[1] JARDIM-MESSEDER D, CAVERZAN A, RAUBER R, et al. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses[J]. New Phytologist, 2015, 208(3):776-789.
[2] ZHANG Q, KUANG H, CHEN C, et al. Corrigendum:the kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF fordegradation[J]. Nat Immunol, 2015, 16(7):785.
[3] CHEN Y, DORN G W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria[J]. Science, 2013, 340(6131):471-475.
[4] GEISLER S, KMSKUJAT H. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 andp62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2):119-131.
[5] NARENDRA D, KANE L A, HAUSER D N, et al. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both[J]. Autophagy, 2010, 6(8):1090-1106.
[6] LAZAROU M, SLITERD A, KANE L A, et al. The ubiquitin kinase PINK1 recruits autophagyreceptors to induce mitophagy[J]. Nature, 2015, 524(7565):309-314.
[7] KIRKIN V, LAMARK T, SOU Y S, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates[J]. Mol Cell, 2009, 33(4):505-516.
[8] HANNA R A, QUINSAY M N, OROGO A M, et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNIP3 protein to selectivelyremove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23):19094-19104.
[9] ZHU Y, MASSEN S, TERENZIO M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis[J]. J Biol Chem, 2013, 288(2):1099-1113.
[10] NOVAK I, KIRKIN V, MCEWAN D G, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1):45-51.
[11] SUN H, WANG L, WANG J, et al. Chapter 7-role of nix in the maturation of erythroidcells through mitochondrial autophagy[J]. Autoph Cancer Other Pathol Inflam Immun Infect Ag, 2014:127-137.
[12] JI Z, LOYD M R, RANDALL M S, et al. A short linear motif in BNIP3L (NIX) mediatesmitochondrial clearance in reticulocytes[J]. Autophagy, 2012, 8(9):1325-1332.
[13] CHOE S C, HAMACHER-BRADY A, BRADY N R. Autophagy capacity and sub-mitochondrialheterogeneity shape Bnip3-induced mitophagy regulation of apoptosis[J]. Cell Commun Signal, 2015, 13(1):1-23.
[14] XU X N, FANG L H, DU G H, et al. Myocardial ischemia injury research progress of Bcl-2 in the regulation of autophagy reperfusion[J]. Chin Pharm J(中国药学杂志),2014, 49(5):353-356.
[15] YUSUKE K, MASAHIKO H, KINYA S, et al. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain [J]. Embo J, 2014, 33(23):2798-2813.
[16] YOULE R J, NARENDRA D P. Mechanisms of mitophagy[J]. Nat Reviews Mol Cell Biol, 2010, 12(1):9-14.
[17] HUANG C, ANDRES A M, RATLIFF E P, et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1[J]. PLoS One, 2011, 6(6):e20975.
[18] HAN Z, CAO J, SONG D, et al. Autophagy is involved in the cardioprotection effect ofremote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice[J]. PLoS One, 2014, 9(1):e86838.
[19] XIUCUI M, HAIYAN L, MURPHY J T, et al. Regulation of the transcription factor EB-PGC1α Axis by Beclin-1 controls mitochondrial quality and cardiomyocyte death under stress[J]. Mol Cell Biol, 2015, 35(6):956-976.
[20] GOTTLIEB R A, MENTZER R M, PHYLLIS-JEAN L. Impaired mitophagy at the heart of injury[J]. Autophagy, 2011, 7(12):1573-1574.
[21] KUBLI D A, ZHANG X, LEE Y, et al. Parkin protein deficiency exacerbates cardiac injuryand reduces survival following myocardial infarction[J]. J Biol Chem, 2013, 288(2):915-926.
[22] HOSHINO A, MITA Y, OKAWA Y, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart[J]. Nat Commun, 2013, 4(4):2308-2308.
[23] CHAANINE A H, GORDON R E, KOHLBRENNER E, et al. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum:mitochondrial calcium homeostasis in diastolic and systolic heart failure[J]. Circulat Heart Fail, 2013, 6(3):572-583.
[24] GUZUN R, KAAMBRE T, BAGUR R, et al. Modular organization of cardiac energy metabolism:energy conversion, transfer and feedback regulation[J]. Acta Physiol, 2015, 213(1):84-106.
[25] VIRAG J A, ANDERSON E J, KENT S D, et al. Cardioprotection via preserved mitochondrial structure and function in the mPer2-mutant mouse myocardium[J]. Am J Physiol Heart Circ Physiol, 2013, 305(4):477-483.
[26] YOSHIDA K, NOGUCHI K. Interaction between chloroplasts and mitochondria:activity, function, and regulation of the mitochondrial respiratory system during photosynthesis[J]. Marine Freshwater Res, 2011, 1(2):383-409.
[27] XIAOLEI L, BENLAN Y, SHANE M, et al. Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy[J]. Mol Cell Biol, 2012, 32(21):4493-4504.
[28] TAKAFUMI O, SHUNGO H, OSAMU Y, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure[J]. Nature, 2012, 485(7397):251-255.
[29] NEETU T, VACEK J C, SRIKANTH G, et al. Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia[J]. J Recept Signal Transduct Res, 2010, 30(2):78-87.
[30] GOTTLIEB R A, MENTZER R M, PHYLLIS-JEAN L. Impaired mitophagy at the heart of injury[J]. Autophagy, 2011, 7(12):1573-1574.

基金

国家自然科学基金资助项目(81173190);国家科技部“重大新药创制”科技重大专项资助项目(2011ZX09102-002-07);江苏省高校优势学科建设工程资助项目(ysxk-2010);江苏省中医药管理局项目(LZ11191);南京中医药大学中药学一级学科开放课题资助项目(2011zyx4-004)
PDF(582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/