预测遗传毒性与非遗传毒性致癌物分类器的建立及验证

吕建军,李耀庭,周舒雅,范昌发,曾雪贞,李保文,汪巨峰, 黄芝瑛,李波

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (20) : 1753-1764.

PDF(3653 KB)
PDF(3653 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (20) : 1753-1764. DOI: 10.11669/cpj.2016.20.008
论著

预测遗传毒性与非遗传毒性致癌物分类器的建立及验证

  • 吕建军1,李耀庭1,3,周舒雅2,范昌发2,曾雪贞3,李保文2,汪巨峰1, 黄芝瑛3*,李波4*
作者信息 +

Establishment and Validation of Classifiers to Predict Genotoxic and Non-Genotoxic Carcinogens

  • L Jian-jun1, LI Yao-ting1,3, ZHOU Shu-ya2, FAN Chang-fa2, ZENG Xue-zhen3, LI Bao-wen2, WANG Ju-feng1, HUANG Zhi-ying3*, LI Bo4*
Author information +
文章历史 +

摘要

目的 以毒理基因组学方法建立预测遗传毒性致癌物与非遗传毒性致癌物的分类器,探索暴露时间对其预测能力的影响并验证其性能。方法 原代小鼠肝细胞模型经2个遗传毒性致癌物黄曲霉素B1和苯并芘,2个非遗传毒性致癌物硫代乙酰胺和匹立尼酸处理24和48 h后,对差异表达基因运用基因芯片预测分析筛选出分类器。通过基因集富集分析研究分类器中基因的功能,并运用STRING数据库预测分类器中基因编码蛋白之间的相互关系。进一步运用2个额外的致癌物验证分类器的预测性能。最后还通过QuantiGene Multiplex实验验证了基因芯片数据。结果 经基因芯片预测分析筛选的48 h分类器优于24 h分类器,分类器中的基因涉及p53通路、肿瘤坏死因子-α信号通路、脂肪酸代谢相关基因集、过氧化物酶体增殖物激活受体通路等。分类器中的基因形成致癌蛋白-蛋白相互作用关系网络图和代谢相关蛋白-蛋白相互作用网络图。经验证48 h分类器对2个额外的致癌物预测可能率接近100%,QuantiGene Multiplex实验结果与芯片数据有较高的一致性。结论 成功建立了预测分类器并验证其性能。该分类器可用于分辨潜在的遗传毒性致癌物和非遗传毒性致癌物,并对未知化合物可能的作用机制进行预测,有望成为药物非临床安全性评价致癌性试验体外替代方法之一。

Abstract

OBJECTIVE To establish classifiers to predict genotoxic and non-genotoxic carcinogens using toxicogenomics methods, explore the effect of exposure time and validated the prediction performance of the classifiers. METHODS The primary mouse hepatocyte model was treated for 24 and 48 h with two genotoxic carcinogens, aflatoxin B1(AFB1), benzo(a)pyrene (BAP) and two non-genotoxic carcinogens, thioacetamide (TAA), wyeth-14643 (WY). The differentially expressed genes were input to prediction analysis for microarray (PAM) software to screen out classifiers. The functions and interrelations of genes in classifiers were studied by gene set enrichment analysis (GSEA) and the protein-protein interactions were predicted using STRING database. Two additional carcinogens to validate the prediction performance of the classifiers were used. Finally, the experiment of QuantiGene Multiplex assay (Q-GP) to validate the microarray data was used. RESULTS Forty-eight h classifiers had a better predicted capability than that of 24 h classifiers. p53 pathway, TNF-α signaling pathway, fatty acid metabolism, PPAR signaling pathway involved in the classifires were enriched by GSEA. Carcinogenic protein-protein interaction network and metabolism-related protein-protein interaction network are obtained using STRING database. The predicted probability of the two additional carcinogens using 48 h classifiers was nearly 100% and data between QuantiGene Multiplex assay and microarray assay had a high conformity. CONCLUSION The classifiers which could be used to discriminate the potential genotoxic carcinogens and non-genotoxic carcinogens and to predict modes of action for unknown compounds, are successfully established and validated. This might be a promising candidate in vitro method for carcinogenicity study in the field of nonclinical safety evaluation of drugs.

关键词

毒理基因组学 / 分类器 / 暴露时间 / 基因芯片预测分析 / 致癌性试验 / 药物非临床安全性评价

Key words

toxicogenomics / classifier / exposure time / prediction analysis for microarray / carcinogenicity study / nonclinical safety evaluation of drugs

引用本文

导出引用
吕建军,李耀庭,周舒雅,范昌发,曾雪贞,李保文,汪巨峰, 黄芝瑛,李波. 预测遗传毒性与非遗传毒性致癌物分类器的建立及验证[J]. 中国药学杂志, 2016, 51(20): 1753-1764 https://doi.org/10.11669/cpj.2016.20.008
L Jian-jun, LI Yao-ting, ZHOU Shu-ya, FAN Chang-fa, ZENG Xue-zhen, LI Bao-wen, WANG Ju-feng, HUANG Zhi-ying, LI Bo. Establishment and Validation of Classifiers to Predict Genotoxic and Non-Genotoxic Carcinogens[J]. Chinese Pharmaceutical Journal, 2016, 51(20): 1753-1764 https://doi.org/10.11669/cpj.2016.20.008
中图分类号: R965   

参考文献

[1] WANG Q L, WANG H X, HU X M,et al. Guideline on the need for carcinogenicity studies of pharmaceuticals in China. Chin J New Drugs(中国新药杂志), 2010, 19(17):1508-1511.
[2] AFSHARI C A, HAMADEH H K, BUSHEL P R. The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci, 2011, 120(S1):225-237.
[3] GROUP I E W. Guidline of the need for carcinogenicity studies of pharmaceuticals S1A. ICH harmonised tripartite guidelines, 1995. http://www. ich. org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1A/Step4/S1A_Guideline. pdf.
[4] GROUP I E W. Testing for carcinogenicity of pharmaceutials S1B. ICH harmonised tripartite guidelines, 1997. http://www. ich. org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1B/Step4/S1B_Guideline. pdf.
[5] TIBSHIRANI R, HASTIE T, NARASIMHAN B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA, 2002, 99(10): 6567-6572.
[6] MATHIJS K, KIENHUIS A S, BRAUERS K J, et al. Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes. Drug Metab Dispos, 2009, 37(6): 1305-1311.
[7] MATHIJS K, BRAUERS K J, JENNEN D G, et al. Discrimination for genotoxic and nongenotoxic carcinogens by gene expression profiling in primary mouse hepatocytes improves with exposure time. Toxicol Sci, 2009, 112(2): 374-384.
[8] SCHAAP M M, ZWART E P, WACKERS P F, et al. Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes. Arch Toxicol, 2012,86(11):1717-1727.
[9] LI Y T, LU J J, ZHOU S Y, et al. Research progress of primary hepatocyte isolation, culture and its application as in vitro models to predict potential carcinogen. Chin J Pharm Anal(药物分析杂志), 2015, 35(7): 1134-1139.
VILLAAMIL V M, GALLEGO G A, VALLADARES-AYERBES M, et al. Multiple biomarker tissue arrays: a computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway. J Mol Signal, 2012,7(1):14-26.
KHALIL A M, GUTTMAN M, HUARTE M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672.
TAN S L, AHMAD T S, NG W M, et al. Identification of pathways mediating growth differentiation factor 5-induced tenogenic differentiation in human bone marrow stromal cells. PLoS One, 2015, 10(11): e0140869.
LAMBERT C B, SPIRE C, CLAUDE N, et al. Dose-and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol, 2009, 234(3): 345-360.
KRUSE J J, SVENSSON J P, HUIGSLOOT M, et al. A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response. Mutat Res, 2007, 617(1-2):58-70.
LEE W J, KIM S C, LEE J, et al. Investigating the different mechanisms of genotoxic and non-genotoxic carcinogens by a gene Set analysis. PLoS One, 2014, 9(1): e86700.
ELLINGER-ZIEGELBAUER H, STUART B, WAHLE B, et al. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res, 2005, 575(1-2):61-84.
UEHARA T, HIRODE M, ONO A, et al. A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology, 2008, 250(1):15-26.
ALARCON-VARGAS D, RONAI Z E. p53-Mdm2--the affair that never ends. Carcinogenesis, 2002, 23(4):541-547.
CORADINI D,FORNILI M,AMBROGI F, et al. TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol, 2012, 2012: 254085.
ZHAO L, SAMUELS T, WINCKLER S, et al. Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53. Mol Cancer Res, 2003, 1(3): 195-206.
WATANABE T, SUZUKI T, NATSUME M, et al. Discrimination of genotoxic and non-genotoxic hepatocarcinogens by statistical analysis based on gene expression profiling in the mouse liver as determined by quantitative real-time PCR. Mutat Res, 2012, 747(2): 164-175.
GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov, 2013, 12(12): 931-947.
SCHRADER M, FAHIMI H D. Peroxisomes and oxidative stress. Biochim Biophys Acta, 2006, 1763(12):1755-1766.
ZAIDI N, LUPIEN L, KUEMMERLE N B, et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res, 2013, 52(4):585-589.

基金

科技部“十二五”国家重大新药创制专项资助项目(2012ZX09302001)
PDF(3653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/