Abstract��Referring to the recent literatures, this review summarized the recent research progress of SR-MSNDDS which were responsive to different stimulus, including pH, reduction, temperature, light, magnetic field or biomolecules, etc. To review the recent research progress of stimuli responsive mesoporous silica nanoparticle (SR-MSNDDS) drug delivery systems and predict their application prospect. SR-MSNDDS could overcome the problem of controlling drug release from MSN and achieve tumor specific drug release, which has become a research hotspot in the field of tumor diagnosis and therapy.
Ľ������������������. �̼���Ӧ�ͽ������������������������������о���չ[J]. �й�ҩѧ��־, 2016, 51(20): 1721-1725.
MU Sheng-jun, LIU Yong-jun, ZHANG Na. Research Progress in Stimuli Responsive Mesoporous Silica Nanoparticles for Cancer Diagnosis and Therapy. Chinese Pharmaceutical Journal, 2016, 51(20): 1721-1725.
ZHANG R R, WANG G W, XU J J, et al. Preparation and evaluation of resveratrol-loaded mesoporous silica nanoparticles modified by amino . Chin Pharm J(�й�ҩѧ��־), 2015,50(5):413-419.
[2]
DONALDSON L. ��Cornell Dots�� receive approval for clinical trials . Mater Today, 2011,14(4):131.
[3]
TORCHILIN V P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery . Nat Rev Drug Discov, 2014,13(11):813-827.
[4]
LEE C H, CHENG S H, HUANG I P, et al. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics . Angew Chem Int Ed Engl, 2010,49(44):8214-8219.
[5]
YANG K, LUO H, ZENG M, et al. Intracellular pH-triggered, targeted drug delivery to cancer cells by multifunctional envelope-type mesoporous silica nanocontainers . ACS Appl Mater Inter, 2015,7(31):17399-17407.
[6]
LIU J, LUO Z, ZHANG J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy . Biomaterials, 2016,83:51-65.
[7]
ZHENG H, WANG Y, CHE S. Coordination bonding-based mesoporous silica for pH-responsive anticancer drug doxorubicin delivery . J Phys Chem C, 2011,115(34):16803-16813.
[8]
RIM H P, MIN K H, LEE H J, et al. pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs . Angew Chem Int Ed Engl, 2011,50(38):8853-8857.
[9]
ZHANG J, WU D, LI M F, et al. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery . ACS Appl Mater Inter, 2015,7(48):26666-26673. ZHENG Q, HAO Y, YE P, et al. A pH-responsive controlled release system using layered double hydroxide (LDH)-capped mesoporous silica nanoparticles . J Mater Chem B, 2013,(11):1644-1648. ZHAO Q, WANG C, LIU Y, et al. PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs . Int J Pharm, 2014,477(1-2):613-622. WU H, LI J, WEI J, et al. Disulfide-crosslinked poly(L-glutamic acid) grafted mesoporous silica nanoparticles and their potential application in drug delivery . Chem Res Chin Univ(�ߵ�ѧУ��ѧ�о�Ӣ�İ�), 2015,31(5):890-894. YOU Y Z, KENNEDY K, STEPHANIE L, et al. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles . Chem Mater, 2008, 20(10):3354-3359. AZNAR E, MONDRAGON L, ROS-LIS J V, et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles . Angew Chem Int Ed Engl, 2011,50(47):11172-11175. HE D, HE X, WANG K, et al. A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles . Langmuir, 2012,28(8):4003-4008. TANG Y, HU H, ZHANG M G, et al. An aptamer-targeting photoresponsive drug delivery system using ��off-on�� graphene oxide wrapped mesoporous silica nanoparticles . Nanoscale, 2015,7(14):6304-6310. BAEZA A, GUISASOLA E, RUIZ-HERN NDEZ E, et al. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles . Chem Mater, 2012,24(3):517-524. CHEN P J, HU S H, HSIAO C S, et al. Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging . J Mater Chem, 2011,21(8):2535-2543. CHENG Y J, LUO G F, ZHU J Y, et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles . ACS Appl Mater Inter, 2015,7(17):9078-9087. HE X, ZHAO Y, HE D, et al. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles . Langmuir, 2012,28(35):12909-12915. ESTELA C, ANDREA B, RAMO��N M M, et al. Controlled delivery systems using antibody-capped mesoporous nanocontainers . J Am Chem Soc, 2009, 131:14075-14080. TAN L, YANG M Y, WU H X, et al. Glucose-and pH-responsive nanogated ensemble based on polymeric network capped mesoporous silica . ACS Appl Mater Inter, 2015,7(11):6310-6316. ZHANG Y, ANG C Y, LI M, et al. Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery . ACS Appl Mater Inter, 2015,7(32):18179-18187. YANG K N, ZHANG C Q, WANG W, et al. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment . Cancer Biol Med, 2014,11(1):34-43. POURJAVADI A, TEHRANI Z M, MOGHANAKI A A. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine . Pharm Res, 2016,33(2):417-432. NIEDERMAYER S, WEISS V, HERRMANN A, et al. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery . Nanoscale, 2015,7(17):7953-7964. CHENG R, FENG F, MENG F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery . J Controlled Release, 2011,152(1):2-12. YU Z, LI N, ZHENG P, et al. Temperature-responsive DNA-gated nanocarriers for intracellular controlled release . Chem Commun (Camb), 2014,50(26):3494-3497. BRUNELLA V, JADHAV S A, MILETTO I, et al. Hybrid drug carriers with temperature-controlled on-off release:a simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles . Reac Funct Polym, 2016,98:31-37. LEE J, PARK J, SINGHA K, et al. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker . Chem Commun (Camb), 2013,49(15):1545-1547. ALEJANDRO B, MAR�MA V R. Smart mesoporous silica nanocarriers for antitumoral therapy . Curr Top Med Chem, 2015, 15(22):2306-2315. ZHANG J X. The construction and evaluation of ATP-responsive anti-cancer drugs and genes co-delivery system . Changchun:Jilin University, 2015. �WZALP V C, PINTO A, NIKULINA E, et al. In situ monitoring of DNA-aptavalve gating function on mesoporous silica nanoparticles . Part Part Syst Char, 2014,31(1):161-167. WU X, WANG Z, ZHU D, et al. pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer . ACS Appl Mater Inter, 2013,5(21):10895-10903. XIAO D, JIA H Z, ZHANG J, et al. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery . Small, 2014,10(3):591-598. WANG H Y, FENG S, REN J J, et al. In vitro anticancer activity of doxorubicin-loaded heparinized magnetic mesoporous silica nanoparticles . Chin Pharm J(�й�ҩѧ��־), 2015,50(24):2130-2134. HE Q J, ZHANG Z W, GAO Y, et al. Intracellular localization and cytotoxicity of spherical mesoporous silica nano-and microparticles . Small, 2009,5(23):2722-2729. LU J, LIONG M, LI Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals . Small, 2010,6(16):1794-1805. YU T, GREISH K, MCGILL L D, et al. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity:their vasculature effect and tolerance threshold . ACS Nano, 2012,6(3):2289-2301.