Abstract��Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are two kinds of multi-modular enzymes, which biosynthesize highly complex polyketides and nonribosonmal peptides, respectively. Both of these two secondary metabolites are of considerable pharmaceutical relevance and are thought to cover diverse biological functions. With the development of sequencing and bioinformatics, data about PKS/NRPS are increasing rapidly. New PKS/NRPS databases are created to analyze gene sequence and predict the functions and structures of natural products. In this article, we introduce five newest databases including PKMiner, NRPSsp, NaPDoS, ClusterMine360, and IMG-ABC, with the goal to help researchers choose databases.
BAKER D D, CHU M, OZA U, et al. The value of natural products to future pharmaceutical discovery [J]. Nat Prod Rep, 2007, 24(6):1225-1244.
[2]
NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the last 25 years [J]. J Nat Prod, 2007, 70(3):461-477.
[3]
FANG Y W, LIU Z, WANG S J, et al. Mining salinispora arenicola CNP193 genome for novel PKS and NRPS gene clusters [J]. Mar Sci(�����ѧ), 2014, 38(12):48-56.
[4]
WANG X. Mining new biosynthetic gene of antibiotics in actinomycetes[D]. Wuhan:Huazhong Agricultural University, 2011.
[5]
OLANO C, MENDEZ C, SALAS J A. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis [J]. Nat Prod Rep, 2010, 27(4):571-616.
[6]
HOPWOOD D A, SHERMAN D H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis [J]. Annu Rev Genet, 1990, 24(1):37-66.
[7]
SUN Y H, DENG Z X. Polyketides and combinatorial biosynthetic approaches [J]. Chin J Antibiot (�й���������־), 2006, 31(1):6-18.
[8]
AYUSO-SACIDO A, GENILLOUD O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes:detection and distribution of these biosynthetic gene sequences in major taxonomic groups [J]. Microbial Ecology, 2005, 49(1):10-24.
[9]
ZHEN Z M, GU X B, YU H Q, et al. Advances in main domains of nonribosomal peptide synthetases [J]. Chin J Antibiot (�й���������־), 2005, 30(2):120-124.
[10]
MOOTZ H D, SCHWARZER D, MARAHIEL M A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases [J]. Chem Bio Chem, 2002, 3(3):490-504.
[11]
EUSTAQUIO A S, NAM S J, PENN K, et al. The discovery of salinosporamide K from the marine bacterium ��Salinispora pacifica�� by genome mining gives insight into pathway evolution [J]. Chem Bio Chem, 2011, 12(1):61-64.
[12]
HORNUNG A, BERTAZZO M, DZIARNOWSKI A, et al. A genomic screening approach to the structure-guided identification of drug candidates from natural sources [J]. Chem Bio Chem, 2007, 8(7):757-766.
[13]
WINTER J M, BEHNKEN S, HERTWECK C. Genomics-inspired discovery of natural products [J]. Curr Opin Chem Biol, 2011, 15(1):22-31.
[14]
UDWARY D W, ZEIGLER L, ASOLKAR R N, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica [J]. Proc Natl Acad Sci, 2007, 104(25):10376-10381.
CONTI E, STACHELHAUS T, MARAHIEL M A, et al. Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S [J]. EMBO J, 1997, 16(14):4174-4183.
[17]
BACHMANN B O, RAVEL J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data [J]. Methods Enzymol, 2009, 458(1):181-217.
[18]
ROTTIG M, MEDEMA M H, BLIN K, et al. NRPS predictor2-a web server for predicting NRPS adenylation domain specificity [J]. Nucl Acid Res, 2011, 39(1):362-367.
[19]
KHURANA P, GOKHALE R S, MOHANTY D, et al. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles [J]. BMC Bioinformatics, 2010, 11(1):57.
[20]
KIM J, YI G S. PKMiner:a database for exploring type �� polyketide synthases [J]. BMC Microbiology, 2012, 12(1):169.
[21]
ZIEMERT N, PODELL S, PENN K, et al. The natural product domain seeker NaPDoS:a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity [J]. PLoS One, 2012, 7(3):e34064.
[22]
CONWAY K R, BODDY C N. ClusterMine360:a database of microbial PKS/NRPS biosynthesis [J]. Nucl Acid Res, 2013, 41(10):402-407.
[23]
HADJITHOMAS M, CHEN I M, CHU K, et al. IMG-ABC:a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites [J]. MBio, 2015, 6(4):e00932-15.
[24]
LI J W H, VEDERAS J C. Drug discovery and natural products:end of an era or an endless frontier? [J]. Science, 2009, 325(5937):161-165.
[25]
MCDONALD J G, SMITH D D, STILES A R, et al. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma [J]. J Lipid Res, 2012, 53(7):1399-1409.
[26]
CIMERMANCIC P, MEDEMA M H, CLAESEN J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters [J]. Cell, 2014, 158(2):412-421.
[27]
BLIN K, MEDEMA M H, KAZEMPOUR D, et al. antiSMASH 2.0:a versatile platform for genome mining of secondary metabolite producers [J]. Nucleic Acids Res, 2013, 41:204-212.
[28]
CABOCHE S. Biosynthesis:bioinformatics bolster a renaissance [J]. Nat Chem Biol, 2014, 10(10):798-800.