蒽环类化合物的结构修饰及抗肿瘤活性研究进展

赵越, 李怀业, 袁兰, 张殊佳

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (12) : 953-961.

PDF(2739 KB)
PDF(2739 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (12) : 953-961. DOI: 10.11669/cpj.2016.12.001
综述

蒽环类化合物的结构修饰及抗肿瘤活性研究进展

  • 赵越1, 2, 李怀业1, 2, 袁兰2*, 张殊佳1*
作者信息 +

Advances in Study of Structural Modification and Antitumor Activities of Anthracyclines

  • ZHAO Yue1, 2, LI Huai-ye1, 2, YUAN Lan2*, ZHANG Shu-jia1*
Author information +
文章历史 +

摘要

蒽环类化合物普遍具有抗肿瘤活性,是临床上使用的一类广谱抗肿瘤抗生素,但有些化合物具有较大的毒性和耐药性,由此限制了该类化合物的进一步发展和应用,而采取对该类化合物的结构进行修饰和改造,是解决这些问题较为有效的途径。因此,人们通过全合成或半合成等各种方法,研究与开发新型蒽环类化合物药物,以期找到疗效更好的蒽环类抗肿瘤药物。笔者在结合自己的工作和参考国内外文献基础上, 简要介绍蒽环类化合物的作用机制、耐药性和心脏毒性,主要综述蒽环类化合物A环、糖基以及孪药蒽环类化合物的构效关系,为将来新型蒽环类化合物研发提供参考。

Abstract

Anthracyclines generally possess antitumor activities and they are clinically broad-spectrum anticancer antibiotics. But some of them have prominent toxicities and drug resistances. These limit their further development and applications. However, proper structural modifications can sometimes solve these problems. So lots of new anthacyclines are obtained through total-synthesis or partial-synthesis for the purpose of finding more effective new drugs. In this paper, combing with our previous work and referring the literatures, we briefly introduce the mechanism, drug resistance, cardiac toxicity of anthracycline, and mainly review the structure-activity relationships of ring A, sugar moieties and twin drugs of anthracyclines. These can provide powerful evidence for further developments of new anthracyclines.

关键词

蒽环化合物 / 结构修饰 / 抗肿瘤活性

Key words

anthracycline / structural modification / antitumor activity

引用本文

导出引用
赵越, 李怀业, 袁兰, 张殊佳. 蒽环类化合物的结构修饰及抗肿瘤活性研究进展[J]. 中国药学杂志, 2016, 51(12): 953-961 https://doi.org/10.11669/cpj.2016.12.001
ZHAO Yue, LI Huai-ye, YUAN Lan, ZHANG Shu-jia. Advances in Study of Structural Modification and Antitumor Activities of Anthracyclines[J]. Chinese Pharmaceutical Journal, 2016, 51(12): 953-961 https://doi.org/10.11669/cpj.2016.12.001
中图分类号: R282   

参考文献

[1] CZEPAS J. The flavonoid quercetin:possible solution for anthracycline-induced cardiotoxicity and multidrug resistance [J]. Biomed Pharmacother, 2014, 68(8):1149-1159.
[2] KHASRAW M, BELL R, DANG C. Epirubicin:is it like doxorubicin in breast cancer? A clinical review [J]. The Breast, 2012, 21(2):142-149.
[3] TSUKIGAWA K, LIAO L, NAKAMURA H, et al. Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin [J]. Cancer Sci, 2015, 106(3):270-278.
[4] SULTANA A. Division of molecular structural biology [D]. Stockholm:Karolinska Institutet, 2006.
[5] KIM B S, MOON S S, HWANG B K. Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola [J]. J Agric Food Chem, 2000, 48(5):1875-1881.
[6] ZHANG S J. Studies on daunomycin analogues as new antitumor agents[D]. Hangzhou:Zhejiang University, 2001.
[7] HOFMAN J, MALCEKOVA B, SKARKA A, et al. Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3 [J]. Toxicol Appl Pharmacol, 2014, 278(3):238-248.
[8] PATAN S. Cardiotoxicity: anthracyclines and long term cancer survivors [J]. Int J Cardiol, 2014, 176(3):1326-1328.
[9] GREGORIO C D E, POTENZA G, FERRARO G. Effectiveness of the combination therapy with lisinopril, ivabradine and multivitamin supplementation in anthracycline-induced severe cardiotoxicity [J]. Int J Cardiol, 2014, 176(3):1374-1376.
[10] EKHOLM F S, BERNYI, LAGERQUIST L, et al. Cytotoxic activity of some glycoconjugates including saponins and anthracyclines [J]. Carbohydr Res, 2012, 356(1):295-298.
[11] WADLER S, FUKS J Z, WIERNIK P H. Phase I and II agents in cancer therapy:I. anthracyclines and related compounds[J]. J Clin Pharmacol, 1986, 26(7):491-509.
[12] KHEIROLOMOOM A, MAHAKIAN L M, LAI C L, et al. Copper-Doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity [J]. Mol Pharm, 2010, 7(6):1948-1958.
[13] MORO S, BERETTA G L, BEN D D, et al. Interaction model for anthracycline activity against DNA topoisomerase II [J]. Biochemistry, 2004, 43(23):7503-7513.
[14] FORREST R A, SWIFT L P, REPHAELI A, et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation [J]. Biochem Pharmacol, 2012, 83(12):1602-1612.
[15] WU Q, YANG Z, NIE Y Z, et al. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches [J]. Cancer Lett, 2014, 347(2):159-166.
[16] FERREIRA R J, SANTOS D D, FERREIRA M. P-glycoprotein and membrane roles in multidrug resistance [J]. Future Med Chem, 2015, 7(7):929-946.
[17] RAJ S, FRANCO V I, LIPSHULTZ S E. Anthracycline-induced cardiotoxicity:a review of pathophysiology, diagnosis, and treatment [J]. Curr Treat Options Cardio Med, 2014, 16(1):315.
[18] HOLSTEIN S A, BIGELOW J C, OLSON R D,et al. Phase I and pharmacokinetic study of the novel anthracycline derivative 5-imino-13-deoxydoxorubicin (GPX-150) in patients with advanced solid tumors [J]. Invest New Drugs, 2015, 33(3):594-602.
[19] OCTAVIA Y, TOCCHETTI C G, GABRIELSON K L, et al. Doxorubicin-induced cardiomyopathy:from molecular mechanisms to therapeutic strategies [J]. J Mol Cell Cardiol, 2012, 52(6):1213-1225.
[20] ROCHETTE L, GUENANCIA C, GUDJONCIK A,et al. Anthracyclines/trastuzumab:new aspects of cardiotoxicity and molecular mechanisms [J]. Trends Pharmacol Sci, 2015, 36(6):326-348.
[21] LOMBARDI P, ANIMATI F, CIPOLLONE A, et al. Synthesis and conformational preference of novel 8-fluoroanthracyclines [J]. Acta Biochim, 1995, 42(4):433-444.
[22] PASQUI F, CANFARINI F, GIOLITTI A, et al. Synthesis of ring a fluorinated anthracyclines [J]. Tetrahedron, 1996, 52(1):185-198.
[23] BISCARDI M, CAPORALE R, PAGLIAI G, et al. In vitro antileukemic effect of a new anthracycline analogue, MEN 11079 [J]. Leuk Res, 2003, 27(12):1125-1134.
[24] ANIMATI F, ARCAMONE F, BIGIONI M, et al. Biochemical and pharmacological activity of novel 8-fluoroanthracyclines:influence of stereochemistry and conformation [J]. Pharmacol, 1996, 50(3):603-609.
[25] BERETTONI M, CIPOLLONE A, OLIVIERI L, et al. Synthesis of 14-fluorodoxorubicin [J]. Tetrahedron Lett, 2002, 43(15):2867-2871.
[26] ISRAEL M, MODEST E J, FREI E. N-Trifluoroacetyladri amycin-14-valerate, an analog with greater experimental antitumor activity and less toxicity than adriamycin [J]. Cancer Res, 1975, 35:1365-1368.
[27] CHHIKARA B S, MANDAL D, PARANG K J. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate [J]. Med Chem, 2012, 55(4):1500-1510.
[28] CHEGAEV K, RIGANTI C, LAZZARATO L, et al. Nitric oxide donor doxorubicins accumulate into doxorubicin-resistant human colon cancer cells inducing cytotoxicity [J]. ACS Med Chem Lett, 2011, 2(7):494-497.
[29] AINA O H, LIU R, SUTCLIFFE J L, et al. From combinatorial chemistry to cancer-targeting peptides [J]. Mol Pharm, 2007, 4(5):631-651.
[30] SOUDY R, CHEN C, KAUR K J. Novel peptide-doxorubucin conjugates for targeting breast cancer cells including the multidrug resistant cells [J]. Med Chem, 2013, 56(19):7564-7573.
[31] ISHIZUMI K, OHASHI N, TANNO N. Stereospecific total synthesis of 9-aminoanthracyclines:(+)-9-amino-9-deoxydaunomycinand related compounds [J]. J Org Chem, 1987, 52(20):4477-4485.
[32] YAMAOKA T, HANADA M, ICHII S, et al. Uptake and intracellular distribution of amrubicin, a novel 9-aminoanthracycline, and its active metabolite amrubicinol in P388 murine leukemia cells [J]. Jpn J Cancer Res, 1999, 90(6):685-690.
[33] SATOUCHI M, KOTANI Y, SHIBATA T, et al. Phase Ⅲ study comparing amrubicin plus cisplatin with irinotecan plus cisplatin in the treatment of extensive-disease small-cell lung cancer:JCOG 0509 [J]. J Clin Oncol, 2014, 32(12):1262-1268.
[34] SCHLAGE P, MEZ G, ORBN E, et al. Anthracycline-GnRH derivative bioconjugates with different linkages:synthesis, in vitro drug release and cytostatic effect [J]. J Controlled Release, 2011, 156(2):170-178.
[35] HOCHDRFFER K, AJAJ K A B U, SCHFER-OBODOZIE C, et al. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved pH dependently or by cathepsin B:synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix [J]. J Med Chem, 2012, 55(17):7502-7515.
[36] DAO K L, SAWANT R R, HENDRICKS J A, et al. Design, synthesis, and initial biological evaluation of a steroidal anti-estrogen-doxorubicin bioconjugate for targeting estrogen receptor-positive breast cancer cells [J]. Bioconjugate Chem, 2012, 23(4):785-795.
[37] SCHREIER V N, PETH L, ORBN E, et al. Protein expression profile of HT-29 human colon cancer cells after treatment with a cytotoxic daunorubicin GnRH-Ⅲ derivative bioconjugate [J]. PLoS One, 2014, 9(4):1-6.
[38] YAKUBOV E, BUCHFELDER M, EYPOGLU I Y,et al. Selenium action in neuro-oncology [J]. Biol Trace Elem Res, 2014, 161(3):246-254.
[39] VINCETI M, DENNERT G, CRESPI C M, et al. Selenium for preventing cancer [J]. Cochrane Db Syst Rev, 2014,3(1):1-195.
[40] TSUCHIYA T, TAKAGI Y, OK K, et al. Synthesis and antitumor activities of 7-O-(2,6-dideoxy-2-fuoro-α-L-talopyranosyl) daunomycinone and adriamycinone [J]. J Antibiot, 1986, 39(5):731-733.
[41] NAKAI K, TAKAGI Y, TSUCHIYA T. Synthesis and antitumor activity of 7-O-[2,6-dideoxy-2-fluoro-5-C-(trifluoromethyl)-α-L-talopyranosyl]-daunomycinone and adriamycinone [J]. Carbohydr Res, 1999, 316(1-4):47-57.
[42] TAKAGI Y, KOBAYASHI N, CHANG M S, et al. Synthesis and antitumor activity of the 7-O-(2,6-dideoxy-2-fuoro-α-L-talopyranosyl) daunomycinone derivatives modified at C-3′ or C-4′ [J]. Carbohydr Res, 1998, 307(3-4):217-232.
[43] HORTON D, KHARE A. Inhibitory activity of four demethoxy fluorinated anthracycline analogs against five human-tumor cell lines [J]. Bioorg Med Chem Lett, 2010, 20(21):6179-6181.
[44] GRESH N, PULLMAN B, ARCAMONE F. Joint experimental and theoretical investigation of the comparative DNA binding affinities of intercalating anthracycline derivatives [J]. Lnvest New Drug, 1989, 35(2):251-256.
[45] YU S W, ZHANG G S, ZHANG W P, et al. Synthesis and biological activities of a 3′-azido analogue of doxorubicin against drug-resistant cancer cells [J]. Int J Mol Sci, 2012, 13(3):3671-3684.
[46] FANG L Y, ZHANG G S, LI C L, et al. Discovery of a daunorubicin analogue that exhibits potent antitumor activity and overcomes P-gp-mediated drug resistance [J]. J Med Chem, 2006, 49(3):932-941.
[47] CUI F L, NIU X Q, LI L Y, et al. Interaction of anthracycline 3′-azido-epirubicin with calf thymus DNAvia spectral and molecular modeling techniques [J]. J Fluoresc, 2015, 25(4):1109-1115.
[48] GENG S G, CUI Y R, LIU Q F, et al. Spectroscopic and molecular modeling study on the interaction of ctDNA with 3′-deoxy-3′-azido doxorubicin [J]. J Lumin, 2013, 141(1):144-149.
[49] CUI F L, HUI G Q, JIANG X Y, et al. Interaction of 3′-azido-3′-deamino daunorubicin with DNA:multispectroscopic and molecular modeling [J]. Int J Biol Macromol, 2012, 50(4):1121-1126.
[50] COGAN P S, KOCH T H J. Studies of targeting and intracellular trafficking of an anti-androgen doxorubicin-formaldehyde conjugate in PC-3 prostate cancer cells bearing androgen receptor-GFP chimera [J]. Med Chem, 2004, 47(23):5690-5699.
[51] SHIOSE Y, KUGA H, OHKI H, et al. systematic research of peptide spacers controlling drug release from macromolecular prodrug system, carboxymethyldextran polyalcohol#peptide#drug conjugates [J]. Bioconjugate Chem, 2009, 20(1):60-70.
[52] PAUL A, VICENT M J, DUNCAN R. Using small-angle neutron scattering to study the solution sonformation of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates [J]. Biomacromolecules, 2007, 8(5):1573-1579.
[53] VERONESE F M, SCHIAVON O, PASUT G, et al. PEG-doxorubicin conjugates:influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity [J]. Bioconjugate Chem, 2005, 16(4):775-784.
[54] TOMLINSON R, HELLER J, BROCCHINI S, et al. Polyacetal-doxorubicin conjugates designed for pH-dependent degradation [J]. Bioconjugate Chem, 2003, 14(6):1096-1106.
[55] ZHANG X, CHIBLI H, MIELKE R, et al. Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosis -resistant cancer cells [J]. Bioconjugate Chem, 2011, 22(2):235-243.
[56] HAN M, VAKILI M R, ABYANEH H S, et al. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells [J]. Mol Pharmaceutics, 2014, 11(8):2640-2649.
[57] ZUNINO F, PRATESI G, PEREGO P. Role of the sugar moiety in the pharmacological activity of anthracyclines:development of a novel series of disaccharide analogs [J]. Biochem Pharmacol, 2001, 61(8):933-938.
[58] ZHANG G S, FANG L Y, ZHU L Z, et al. Syntheses and biological activities of disaccharide daunorubicins [J]. J Med Chem, 2005, 48(16):5269-5278.
[59] ZHU L Z, CAO X H, CHEN W L, et al. Syntheses and biological activities of daunorubicin analogs with uncommon sugars [J]. Bioorg Med Chem, 2005, 13(23):6381-6387.
[60] EKHOLM F S, SCHNEIDER G, WLFLING G, et al. An approach to the synthesis and attachment of scillabiose to steroids [J]. Steroids, 2011, 76(6):588-595.
[61] CIPOLLONE A, BERETTONI M, BIGIONI M, et al. A novel anthracycline oligosaccharides:influence of chemical modifications of the carbohydrate moiety on biological activity [J]. Bioorg Med Chem, 2002, 10(5):1459-1470.
[62] CUI F L, QIN L X, ZHANG G S, et al. Interaction of anthracycline disaccharide with human serum albumin:investigation by fluorescence spectroscopic technique and modeling studies [J]. J Pharm Biomed Anal, 2008, 48(3):1029-1036.
[63] TEVYASHOVA A, SZTARICSKAI F, BATTA G, et al. Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties [J]. Bioorg Med Chem Lett, 2004, 14(18):4783-4789.
[64] ZHANG G S, FANG Y L, ZHU L Z, et al. Syntheses and biological activity of bisdaunorubicins [J]. Bioorg Med Chem, 2006, 14(2):426-434.
[65] GAJEK A, DENE M, BUKOWSKA B, et al. Pro-apoptotic activity of new analog of anthracyclines-WP 631 in advanced ovarian cancer cell line [J]. Toxicol in Vitro, 2014, 28(2):273-281.
[66] SLIWINSKA A, ROGALSKA A, MARCZAK A, et al. Metformin, but not sitagliptin, enhances WP 631-induced apoptotic HepG2 cell death [J]. Toxicol in Vitro, 2015, 29(5):1116-1123.
[67] KRAKOVIOV H, ETRYCH T, ULBRICH K. HPMA-based polymer conjugates with drug combination [J]. Eur J Pharm Sci, 2009, 37(3-4):405-412.

基金

国家自然科学基金资助项目( 91330103)
PDF(2739 KB)

Accesses

Citation

Detail

段落导航
相关文章

/