目的 对我国已上市的重组人促红细胞生成素的一级结构进行比对分析。方法 针对9家制药企业生产的重组人促红细胞生成素理化对照品,测定质谱相对分子质量、液质肽图、寡糖图谱及唾液酸含量,并对测定结果进行比对分析。结果 各样品去除N-糖基后实测相对分子质量均与理论值一致,误差均小于1;液质肽图测定中氨基酸覆盖率均为100%,序列均与理论一致;二硫键连接方式均为Cys7-Cys161、Cys29-Cys33;O-糖基化位点均为Ser126,N-糖基化位点均为Asn24、Asn38、Asn83;各样品的糖基修饰方式存在差异,不同糖型的相对比例不一致;唾液酸含量测定结果介于(物质的量的比11.5~15.7)促红细胞生成素之间。结论 9家EPO制品的一级结构基本一致,差异主要表现在糖基修饰水平。
Abstract
OBJECTIVE To characterize and compare the primary structures of recombinant human erythropoietin marketed in China.METHODS Recombinant human erythropoietin reference substances were obtained from nine manufacturers, for which the molecular mass, peptide mass mapping, oligosaccharide profile and content of sialic acid were analyzed and compared. RESULTS The measured molecular masses of de-N-glycosylated EPO were all in agreement with the theoretical values with mass error less than 1. All the samples had consistent amino acid sequence, disulfide bonds (Cys7-Cys161, Cys29-Cys33), O-glycosylation site (Ser126), and N-glycosylation sites (Asn24, Asn38, Asn83), but different glycosylation pattern and ratio of glycoforms. The sialic acid content of the nine samples were within 11.5-15.7 mol∶mol EPO. CONCLUSION Recombinant human erythropoietins from nine manufacturers have identical primary structures except for glycosylation patterns.
关键词
一级结构 /
重组人促红细胞生成素 /
糖基化 /
二硫键
{{custom_keyword}} /
Key words
primary structure /
recombinant human erythropoietin /
glycosylation /
disulfide bond
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG M, BUTLER M. Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms[J]. Biotechnol Prog, 2002, 18(1):129-138.
[2] RESTELLI V, WANG M D, HUZEL N, et al. The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells[J]. Biotechnol Bioeng, 2006, 94(3):481-494.
[3] DELORME E, LORENZINI T, GIFFIN J, et al. Role of glycosylation on the secretion and biological activity of erythropoietin [J]. Biochemistry, 1992, 31(41):9871-9786.
[4] REICHEL C. Differences in sialic acid O-acetylation between human urinary and recombinant erythropoietins: a possible mass spectrometric marker for doping control [J]. Drug Test Anal, 2013, 5(11-12):877-889.
[5] YUEN C T, STORRING P L, TIPLADY R J, et al. Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures[J]. Br J Haematol, 2003, 121(3):511-526.
[6] MURAKAMI M, KIUCHI T, NISHIHARA M, et al. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity[J]. Sci Adv, 2016, 2(1):e1500678.
[7] DARLING R J, KUCHIBHOTLA U, GLAESNER W, et al. Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostatic interactions[J]. Biochemistry, 2002, 41(49):14524-14531.
[8] TOYODA T, ITAI T, ARAKAWA T, et al. Stabilization of human recombinant erythropoietin through interactions with the highly branched N-glycans[J]. J Biochem, 2000, 128(5):731-737.
[9] TOYODA T, ARAKAWA T, YAMAGUCHI H. N-glycans stabilize human erythropoietin through hydrophobic interactions with the hydrophobic protein surface: studies by surface plasmon resonance analysis[J]. J Biochem, 2002, 131(4):511-555.
[10] YIN B, GAO Y, CHUNG C Y, et al. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation[J]. Biotechnol Bioeng, 2015, 112(11):2343-2351.
[11] KIANMEHR A, MOHAMMADI H S, SHOKRGOZAR M A, et al. In silico design and analysis of a new hyperglycosylated analog of erythropoietin to improve drug efficacy[J]. Adv Biomed Res, 2015, 4:142.
[12] GOH J S, CHAN K F, SONG Z. Production of highly sialylated recombinant glycoproteins using ricinus communis agglutinin-I-resistant CHO glycosylation mutants[J]. Methods Mol Biol,2015, 1321:323-333.
[13] SU D, ZHAO H, XIA H. Glycosylation-modified erythropoietin with improved half-life and biological activity[J]. Int J Hematol,2010,91(2):238-344.
[14] LIU L, LI H, HAMILTON S R, et al. The impact of sialic acids on the pharmacokinetics of a PEGylated erythropoietin[J]. J Pharm Sci,2012, 101(12):4414-4418.
[15] GOH J S, LIU Y, LIU H, et al. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function[J]. Biotechnol J,2014,9(1):100-109.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
十三五科技重大专项课题资助项目(2015ZX09501008);中国食品药品检定研究院青年基金课题资助项目(2015B03)
{{custom_fund}}