Identification of Rubi Parvifolii Radix and Its Adulterants Using DNA Barcoding
CHEN Xiao-lu1, XIANG Li2, MEI Quan-xi1*
1. Zhongshan Hospital Affiliated to Guangzhou University of Chinese Medicine, Zhongshan 528401, China; 2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Key Laboratory of Beijing for Identification Andsafety Evaluation of Chinese Medicine, Beijing 100700, China
Abstract��OBJECTIVE To identify Rubi Parvifolii Radix from its adulterants using ITS2 sequence.METHODS All the DNA of Rubi Parvifolii Radix and its adulterants were extracted. All the sequences were assembled using the CondonCode Aligner V3.7.1. The Kimura 2-parameter(K2P) genetic distances and the neighbor joining(NJ) phylogenetic tree were calculated by using MEGA5.1.RESULTS The ITS2 sequences were succesfully amplified and sequenced.The length of ITS2 sequences of Rubus parvifolius was 212 bp, and the average GC content was 57.42%. Among 20 ITS2 sequences of R. parvifolius, three transversions were detected at site 66,118 and 177. The maximum intra-specific K2P distance of R. parvifolius was 0.014, lower than the minimum inter-specific K2P distances of adulterants, except for R. coreanus. Additionally, the ITS2 sequences of all the polytypic species were separated into pairs of divergent clusters in the NJ tree and R. parvifolius can be distinguished clearly from its adulterants. The ITS2 sequences of 23 samples of Rubi Parvifolii Radix collected from different herb markets, were successfully amplified. The NJ tree analysis indicated that 13 samples clustered with R. parvifolius, while the other 10 samples were clustered into other divergent clusters. CONCLUSION ITS2 Sequence can be used as DNA barcode to correctly identify Rubi Parvifolii Radix from its adulterant.
��С¶,����,÷ȫϲ. éݮ�������αƷ��DNA����������о�[J]. �й�ҩѧ��־, 2015, 50(17): 1490-1495.
CHEN Xiao-lu, XIANG Li, MEI Quan-xi. Identification of Rubi Parvifolii Radix and Its Adulterants Using DNA Barcoding. Chinese Pharmaceutical Journal, 2015, 50(17): 1490-1495.
Standard of Traditional Chinese Medical of Guangdong. (Vol ��)(�㶫��ҩ�ı��ڶ���)[S]. 2011:200-202.
[2]
MEI Q X, ZHONG X W, FU L W, et al. Inhibitory action of different traditional Chinese drug on Human nasopharyngeal carcinoma cells CNE-2 in vitro[J]. J China Pharm(�й�ҩ��),2009,20(15):1130-1131.
[3]
MEI Q X, FAN W C, GAO Y Q, et al. Inhibiting effect of 12 Guangdong native heat-clearing herbs on EB virus antigen expression and their cytotoxicity[J]. Med Plant, 2014, 5(1): 47-49, 54.
[4]
HU Y, MEI Q X. The textual research and modern research overview on the radix Rubu sparvifolius[J]. Lishizhen Med Mater Med Reser(ʱ���ҽ��ҩ),2013,24(11): 2764-2766.
[5]
MEI Q X. Guangdong DichanYaocaiYanjiu(�㶫�ز�ҩ���о�)[M]. Guangzhou: Guangdong Science and Technology Press, 2011: 579.
[6]
MILLER S E. DNA Barcoding and the renaissance of taxonomy[J]. Proc Nat Acad Sci, 2007, 104(12): 4775-4776.
[7]
SCHINDEL D E, MILLER S E. DNA Barcoding a useful tool for taxonomists[J]. Nature, 2005, 435(7038): 17.
[8]
LI X W, YANG Y, HENRY R J, et al. Plant DNA Barcoding: From gene to genome[J]. Biol Rev, 2015,90(1):157-166.
[9]
CHEN S L, YAO H, HAN J P, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J]. PLoS One, 2010, 5(1): e8613.
[10]
HAN J P, ZHU Y J, CHEN X C, et al. The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full-length ITS[J]. Bio Med Res Int, 2013, Doi:10.1155/2013/741476.
[11]
WOLF M, CHEN S L, SONG J Y, et al. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences-a proof of concept[J]. PLoS One, 2013, 8(6): e66726.
[12]
SONG J Y, CHEN S L, LI D Z, et al. Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA [J]. PLoS One, 2012, 7(8): e43971.
[13]
CHEN S L, PANG X H, YAO H, et al. Identification system and perspective for DNA barcoding traditional Chinese materia medica[J]. Mod Tradit Chin Med Mater Med World Sci Tech(�����ѧ����:��ҽҩ�ִ���), 2012, 13(5): 747-754.
[14]
XIN T Y,YAO H, GAO H, et al. Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode[J]. Food Res Int, 2013, 54(2): 1699-1704.
[15]
XIN T Y, YAOH,LUO K, etal. Stability and accuracy of the identification of Notopterygii Rhizoma et Radix using the ITS/ITS2 barcodes[J]. Acta Pharm Sin(ҩѧѧ��), 2014,47(8):1098-1105.
[16]
PANG X H, SONG J Y, ZHU Y J, et al. Using DNA barcoding to identify species within Euphorbiaceae [J]. Planta Med, 2010, 76(15): 1784-1786.
[17]
CHEN S L. Standard Dna Barcodes of Chinese Materia Medica in Chinese Pharmacopoeia(�й�ҩ����ҩ��DNA�����������)[M]. Beijing: Science Press Ltd, 2015: 6, 18.
[18]
CHEN S L, GUO B L, ZHANG G J, et al. Advances of studies on new technology and method for identifying traditional Chinese medicinal materials [J]. China J Chin Mater Med(�й���ҩ��־), 2012,37(8):1043-1054.
[19]
HAN J P, SONG J Y,YAO H, et al. Comparison of DNA barcodersin identifying medicinal materials[J]. China J Chin Mater Med(�й���ҩ��־), 2012, 37(8): 1056-1061.
[20]
LUO K, MA P, YAO H, et al. Study on DNA extraction method for Chinese herbs[J]. Mod Tradit Chin Med Mater Med World Sci Tech(�����ѧ����:��ҽҩ�ִ���), 2012, 14(2): 1433-1439.
[21]
LIAO J, LIANG Z B, ZHANG L, et al. DNA Barcoding of common medicinal snakes in China[J]. Chin Pharm J(�й�ҩѧ��־),2013,48(15): 1255-1260.
[22]
XIN T Y, LI X J, YAO H, et al, Survey of commercial Rhodiola products revealed species diversity and potential safety issues[J]. Scientific Reports, 2015,5. 8337. doi:10. 1038/srep08337.
[23]
XIN T Y, ZHAO S, SONG J Y. Identification of commercial Lycii cortex and its Adulterants using ITS2 sequence as DNA Barcode[J]. Chin Pharm J(�й�ҩѧ��־), 2013,48(15):1255-1260.