中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2014, Vol. 49 Issue (16) :1377-1381    DOI: 10.11669/cpj.2014.16.002
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
��Ȼҩ�ᆳƤ��ҩϵͳ�о���չ
����1��������2*����ѩ2�������2*
1. �й�ҽҩ���磬���� 100082��
2. ����ҽѧ��ѧԺ���������ҽѧ�о��������� 100850
BAI Yi1, DU Li-na2*, FENG Xue2, JIN Yi-guang2*
1.China Pharmaceutial Newspaper, Beijing 100082, China;
2. Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China

Download: PDF (979KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� ������������Ȼҩ�ᆳƤ��ҩ�Ƽ����¼��͡��¼��������о������½�չ������ ���Ľ�����������й���Ȼҩ�ᆳƤ��ҩϵͳ���о����ģ����¼��͡��¼������������������������ ��Ƥ��ҩϵͳ���п��͡���ȥ�����ֲ�Ũ�ȸߡ���ȫ��ǿ��������С���ص㣬�Ѿ���ΪҩƷ�г�����Ҫ��һ�ּ��͡���Ȼҩ�ᆳƤ��ҩ�¼��Ͱ�����������΢�顢���ݡ�ǰҩ��Һ��;�¼�������͸Ƥ��͸�ٽ��������ӵ��롢�������������� �ۺ����������¼��ͺ��¼������ﵽ������Ȼҩ����Ч�ɷ־�Ƥ���պͿ��͵�Ŀ�ģ������ҹ���Ȼҩ�ᆳƤ��ҩϵͳ���з�ˮƽ��
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
����
������*
��ѩ
�����*
�ؼ����� ��Ȼҩ��   ��Ƥ��ҩϵͳ   ������   ΢��   ֬����     
Abstract�� OBJECTIVE To summarize the latest research progress in formulations and technologies of transdermal drug delivery system (TDDS) for natural drugs. METHODS The research articles published in the past six years related to TDDS for natural drugs were reviewed from the perspectives of formulations and technologies. RESULTS Transdermal drug delivery systems have the advantages of controlled release, readily wiping off, high accumulation in situ, high safety and low side effect, which become an important dosage form in the pharmaceutical market. The novel dosage forms of TDDS for natural drugs include nanoparticles, microemulsions, vesicles, prodrugs and liquid crystalline. The related novel techniques include transdermal penetration enhancers, iontophoresis, and sonophoresis. CONCLUSION The trend of TDDS for natural drugs is to combine the novel forms and the techniques to improve drug transdermal absorption and controlled release. This may be advantageous for improving R&D of TDDS for natural drugs.
Keywords�� natural drug,   transdermal drug system,   nanoparticle,   microemulsion,   liposome     
�ո�����: 2014-09-03;
ͨѶ���� ������,Ů,��ʿ,���о�Ա �о�����:��Ƥ��/�Ĥ��ҩϵͳ,���װ����Ƽ� Tel/Fax:(010)66930216/((010)68214653 E-mail:dulina@188.com;�����,��,��ʿ,�о�Ա,��ʿ����ʦ �о�����:����װҩ�ﴫ��ϵͳ,���װ����Ƽ�,��Ƥ��ҩϵͳ,ҩ�ø߷��� Tel:(010)66931220 Fax:(010)68214653      Email: jinyg@139.com
���߼��: ���㣬Ů�����α༭�о�����:ҽҩ�Ƽ����ź�ҩ���Ƽ�
���ñ���:   
����, ������*, ��ѩ�� .��Ȼҩ�ᆳƤ��ҩϵͳ�о���չ[J]  �й�ҩѧ��־, 2014,V49(16): 1377-1381
BAI Yi-, DU Li-Na-*, FENG Xue- etc .Progress of Transdermal Drug Delivery Systems for Natural Drugs[J]  Chinese Pharmaceutical Journal, 2014,V49(16): 1377-1381
��
[1] XIONG L, LI G, SU B, et al. A study on the relationship betweenthe oil/water partition coefficient and transdermal action of drugs: Dexamethasone acetate and dexamethansone sodium phosphate. Chin Pharm J(�й�ҩѧ��־),2011,46(6):439-446.[2] FAN X, WAN L, YUAN L, et al. Determination of jatrorrhizine hydrochloride, palmatine hydrochloride and berberine hydrochloride in compound Kushne lotion by HPLC. Chin Pharm J(�й�ҩѧ��־),2005,40(23):1820-1822.[3] ZHANG Y, YU C, WANG Q,et al. Anti-inflammatory and the analgesic effects of compound matrine and baicalin ointment. Chin Pharm J(�й�ҩѧ��־),2005,40(23):1820-1822.[4] YAN Y, WANG X, HUANG X,et al. Cataplamat of traditonal Chinese medicine. Chin Pharm J(�й�ҩѧ��־),1997,32(3):145-147.[5] ZHOU H, WANG D. Pharmacokinetic study of ��-asarone cataplasm in rabbits. Chin Pharm J(�й�ҩѧ��־),2007,42(3):213-215.[6] LADEMANN J, RICHTER H, SCHAEFER U F, et al. Hair follicles-a long-term reservoir for drug delivery. Skin Pharmacol Physiol, 2006, 19: 232-236.[7] LADEMANN J, RICHTER H, MEINKE M C, et al. Drug delivery with topically applied nanoparticles: science fiction or reality . Skin Pharmacol Physiol, 2013, 26(4-6): 227-233.[8] TACHAPRUTINUN A, MEINKE M C, RICHTER H, et al. Comparison of the skin penetration of Garcinia mangostana extract in particulate and non-particulate form. Eur J Pharm Biopharm, 2014, 88(2): 307-313.[9] CHEN H, CHANG X, WENG T, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Controlled Release, 2004, 98(2): 427-436. ZHANG Y T, ZHAO J H, ZHANG S J, et al. Enhanced transdermal delivery of evodiamine and rutaecarpine using microemulsion. Int J Nanomed, 2011, 6(10): 2469-2482. ZHAO J H, JI L, WANG H, et al. Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: Preparation and evaluation in vitro and in vivo. Int J Nanomed, 2011, 6(8):1611-1619. WEI H, ZHANG Z, NIU X F. Pharmacokinetics and distribution of microemulsion system for transdermal delivery of matrine in mouse. Chin Pharm J (�й�ҩѧ��־), 2010, 45(24): 1939-1943. SHEN L N, ZHANG Y T, WANG Q, et al. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm, 2014, 460(1-2): 280-288. ZHANG Y T, XU Y M, ZHANG S J, et al. In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid. Drug Dev Ind Pharm, 2014, 40(3): 301-307. HUI X, XU K, DOU J J, et al. Studies on transdermal pharmacokinetic and pharmacodynamics of sinomenin transfersomes. Chin Pharm J (�й�ҩѧ��־), 2011, 46(5): 374-377. YANG B C, CHU Z F, ZHU S, et al. Study of pharmacokinetics and tissue distribution of liposomal brucine for dermal administration. Int J Nanomed, 2011, 6: 1109-1116. ZHANG Y T, SHEN L N, ZHAO J H, et al. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int J Nanomed, 2014, 9(2): 669-678. LIN C F, HWANG T L, SUWAYEH S A A, et al. Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharm, 2013, 445(1-2): 153-162. BOIY A, ROELANDTS R, ROSKAMS T, et al. Effect of vehicles and esterification on the penetration and distribution of hypericin in the skin of hairless mice. Photodiag Photodyn Therapy, 2007, 4(1): 130-139. PENG X S, WEN X G, PAN X, et al. Design and in vitro evaluation of capsaicin transdermal controlled release cubic phase gels. AAPS Pharm Sci Tech, 2010, 11(3): 1405-1410. CHAIYANA W, RADES T, OKONOGI S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm, 2013, 452(1-2): 201-210. LUO M F, SHEN Q, CHEN J J. Transdermal delivery of paeonol using cubic gel and microemulsion gel. Int J Nanomed, 2011, 6(2): 1603-1610. SPIEGELEER B D, BOONEN J, MALYSHEVA S V, et al. Skin penetration enhancing properties of the plant N-alkylamide spilanthol. J Ethnopharm, 2013, 148(1): 117-125. HAN H X, MA Y S, CUI L L, et al. Primarily exploration of the preparation of ligustrazine phosphate transdermal patches and the effect on permeation enhancing of volatile oil of Flos Magnoliae. Chin Pharm J (�й�ҩѧ��־), 2011, 46(24): 1915-1918. ZHOU F H, ZHAO M J, ZHAO H Y. Iontophoresis with traditional Chinese herbal medicine accelerates the healing of bone fracture. J First Mil Med Univ(��һ��ҽ��ѧѧ��), 2004, 24(6): 708-710. MITRAGO T S, BLANKSCHTEIN D, LANGER R. Ultrasound-mediated transdermal protein delivery . Science, 1995, 269(5225): 850-853. JIANG Z, LIU X, LIN Y, et al. Compound capsaicin ultrasound sunburn treatment gel. Chin Tradit Pat Med (�г�ҩ), 2011, 33(11): 1883-1889. ABREU V G C, CORREA G M, SILVA T M, et al. Anti-inflammatory effects in muscle injury by transdermal application of gel with Lychnophora pinaster aerial parts using phonophoresis in rats. BMC Compl Alterna Med, 2013, 13(2): 270-276. SILL T J, RECUM H A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989-2006. LENAGHAN S C, XIA L J, ZHANG M J. Identification of nanofibers in the Chinese herbal medicine: Yunnan Baiyao. J Biomed Nanotech, 2009, 5(5): 472-476.
[1] ��Х��,,��,������*,���,����,����,�κ���* .������֬����-С����RNA������Ĵ����Ż���������ǰ���ٰ��������о�[J]. �й�ҩѧ��־, 2014,49(8): 669-673
[2] �򵤵�,,����,,�ƻ�,����,*,������.�������������֬����������������ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2014,49(7): 588-591
[3] ������, ������, ������, �ȼ�, κӱ��, ���*.��Ī��ƽ/��ܺ�˫��ҩ���������Ʊ������ڷֲ��о�[J]. �й�ҩѧ��־, 2014,49(6): 479-484
[4] ������, , �� ��, �����, ������, �޹���*.��ɼ����΢����ҩϵͳ���Ʊ�������[J]. �й�ҩѧ��־, 2014,49(6): 485-489
[5] ̷Զ��, , ������, �½�, ����־*, ����÷.��H102�ĵ�PEG-PLGA���������Ʊ����������������о�[J]. �й�ҩѧ��־, 2014,49(3): 216-220
[6] ����, ÷�˹�*.����֬������͵�����/������ҩ����о���չ[J]. �й�ҩѧ��־, 2014,49(2): 94-98
[7] �ﴨ�����󣬺���ӱ�������ǣ�������������*.�ͷ��Ӹ���pH�����ϻ��Ǿ������������Ʊ��������Ĥ͸��������[J]. �й�ҩѧ��־, 2014,49(16): 1414-1419
[8] ����������������ѩ����������*����һ*.����Fe3O4-�ȼ׻��Ǿ������������Ʊ������������о�[J]. �й�ҩѧ��־, 2014,49(16): 1432-1436
[9] ��Ծ��������������ܹ�����¬����*.��˳������������������Ϊ�Ź��������Ӱ�����о��ſ�[J]. �й�ҩѧ��־, 2014,49(15): 1291-1294
[10] ����������������*��������������.��ʯ�᳤�����֬����ע��Һ���Ʊ�������������[J]. �й�ҩѧ��־, 2014,49(15): 1333-1337
[11] ��ʦ���������ܷ��磬��Ʒƣ����ᣬ����*.ͬ�ᾲ�����䷨�Ʊ���ҩ���������о���չ[J]. �й�ҩѧ��־, 2014,49(15): 1285-1290
[12] Ӧѩ�����޷���Ԭ���磬��ѣ��ƻ�.�������-��޼«������֬������Ʊ������⿹���������о�[J]. �й�ҩѧ��־, 2014,49(14): 1233-1239
[13] ���ϣ����Σ���԰*.�Һ��Բ�ͬ��炙��ȵ����׻��Ǿ��ǿڷ���������Ӱ��[J]. �й�ҩѧ��־, 2014,49(13): 1146-1151
[14] ��ΰ, �Ż�, ��־��, ���ʤ, ÷�˹�*.��ʯ�᳤���������֬����ҩЧѧ����֯�ֲ��о�[J]. �й�ҩѧ��־, 2014,49(12): 1036-1039
[15] ţ���Σ��䶬ѩ�������ȣ����ǣ��̴䷼*.ȥ�װ����������Ƽ��о���չ[J]. �й�ҩѧ��־, 2013,23(9): 663-666
Copyright 2010 by �й�ҩѧ��־