巨噬细胞在动脉粥样硬化中的研究进展

阎雨, 何阳阳, 方莲花*, 杜冠华*

中国药学杂志 ›› 2014, Vol. 49 ›› Issue (1) : 7-10.

PDF(624 KB)
PDF(624 KB)
中国药学杂志 ›› 2014, Vol. 49 ›› Issue (1) : 7-10. DOI: 10.11669/cpj.2014.01.002
综 述

巨噬细胞在动脉粥样硬化中的研究进展

  • 阎雨, 何阳阳, 方莲花*, 杜冠华*
作者信息 +

Research Progress of the Roles of Macrophages in Atherosclerosis

  • YAN Yu, HE Yang-yang, FANG Lian-hua*, DU Guan-hua*
Author information +
文章历史 +

摘要

目的 综述巨噬细胞在动脉粥样硬化病程中的主要作用, 为动脉粥样硬化的诊断、治疗及药物研究和开发提供文献依据和新的策略。方法 对近几年关于巨噬细胞在动脉粥样硬化中作用的文献进行查阅、分析、归纳和总结。结果与结论巨噬细胞参与了动脉粥样硬化病理进程中的多个环节, 巨噬细胞相关细胞因子、趋化因子、酶、转运蛋白、miRNA等生物大分子发挥着重要作用。认识巨噬细胞及相关生物大分子在动脉粥样硬化发生发展中的作用, 对于深入理解动脉粥样硬化的病因、发病机制, 为其提供诊断、治疗及药物研发依据具有重要意义。

Abstract

OBJECTIVE To review the central functions of macrophages in atherosclerosis, to provide the literature support and strategies for diagnosis, therapy, pharmaceutical research and development of atherosclerosis.METHODS This paper had consulted, analysed, concluded and summarized research progress of the functions of macrophages in atherosclerosis in recent years. RESULTS AND CONCLUSION Macrophages participate in many stages of atherosclerosis, and biomacromolecules related to macrophages, such as cytokines, chemokines, enzymes, transportproteins and miRNA, also play important roles. It is important to recognize the roles of macrophages and related biomacromolecules in atherosclerosis development in order to deeply understand etiology and pathogenesis of atherosclerosis, and provide bases for diagnosis, therapy, pharmaceutical research and development.

关键词

动脉粥样硬化 / 巨噬细胞 / 炎症 / 药物研发

Key words

atherosclerosis / macrophage / inflammation / pharmaceutical research

引用本文

导出引用
阎雨, 何阳阳, 方莲花*, 杜冠华*. 巨噬细胞在动脉粥样硬化中的研究进展[J]. 中国药学杂志, 2014, 49(1): 7-10 https://doi.org/10.11669/cpj.2014.01.002
YAN Yu, HE Yang-yang, FANG Lian-hua*, DU Guan-hua*. Research Progress of the Roles of Macrophages in Atherosclerosis[J]. Chinese Pharmaceutical Journal, 2014, 49(1): 7-10 https://doi.org/10.11669/cpj.2014.01.002
中图分类号: R95   

参考文献

[1] HANSSON G K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005, 352(16):1685-1695.[2] MAYERL C, LUKASSER M, SEDIVY R, et al. Atherosclerosis research from past to present-on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch, 2006, 449(1):96-103.[3] HANSSON G K, HERMANSSON A. The immune system in atherosclerosis. Nat Immunol, 2011, 12(3):204-212.[4] GALKINA E, LEY K. Leukocyte influx in atherosclerosis. Curr Drug Targets, 2007, 8(12): 1239-1248.[5] MESTAS J, LEY K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med, 2008, 18(6):228-232.[6] GALKINA E, LEY K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol, 2007, 27(11):2292-2301.[7] PAULSON K E, ZHU S N, CHEN M, et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res, 2010, 106(2):383-390.[8] JOHNSON J L, NEWBY A C. Macrophage heterogeneity in atherosclerotic plaques. Curr Opin Lipidol, 2009, 20(5):370-378.[9] ROBBINS C S, CHUDNOVSKIY A, RAUCH P J, et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesionsclinical perspective. Circulation, 2012, 125(2):364-374. WEST A P, BRODSKY I E, RAHNER C, et al. TLR Signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472(7344):476-480. STEWART C R, STUART L M, WILKINSON K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol, 2009, 11(2):155-161. CURTISS L K, BLACK A S, BONNET D J, et al. Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR) 1 or TLR6 agonists. J Lipid Res, 2012, 53(10): 2126-2132. MKINEN P I, LAPPALAINEN J P, HEINONEN S E, et al. Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors. Circ Res, 2010, 88(3):530-538. MINEO C, SHAUL P W. Functions of scavenger receptor class B, type I in atherosclerosis. Curr Opin Lipidol, 2012, 23(5):487-493. OUT R, HOEKSTRA M, HABETS K, et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol, 2008, 28(2):258-264. WESTERTERP M, MURPHY A J, WANG M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res, 2013, 112(11):1456-1465. YVAN-CHARVET L, PAGLER T, GAUTIER E L, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science, 2010, 328(5986): 1689-1693. TARLING E J, BOJANIC D D, TANGIRALA R K, et al. Impaired development of atherosclerosis in Abcg1-/- Apoe-/- mice identification of specific oxysterols that both accumulate in Abcg1-/- Apoe-/- tissues and induce apoptosis. Arterioscler Thromb Vasc Biol, 2010, 30(6):1174-1180. TABAS I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol, 2005, 25(11):2255-2264. DEUELL K A, CALLEGARI A, GIACHELLI C M, et al. RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: Dependence on IL-6 and TNF-α. J Vasc Res, 2012, 49(6):510-521. BEN J, ZHANG Y, ZHOU R, et al. Major vault protein regulates class A scavenger receptor-mediated TNF-α synthesis and apoptosis in macrophages. J Biol Chem, 2013, 288(27): 20076-20084. KLEINBONGARD P, HEUSCH G, SCHULZ R. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther, 2010, 127(3):295-314. ZHANG H, PARK Y, WU J, et al. Role of TNF-α in vascular dysfunction. Clin Sci (Lond), 2009, 116(3): 219-230. MAKI-PETAJA K, ELKHAWAD M, JOSHI F, et al. 103 Aortic inflammation is reduced, and paralelles changes in aortic stiffness by anti-TNF α therapy in rheumatoid arthritis. Heart, 2012, 98(suppl 1):59-60. KAMARI Y, WERMAN-VENKERT R, SHAISH A, et al. Differential role and tissue specificity of interleukin-1α gene expression in atherogenesis and lipid metabolism. Atherosclerosis, 2007, 195(1):31-38. CLARKE M C, TALIB S, FIGG N L, et al. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res, 2010, 106(2):363-372. LUTGENS E, DAEMEN M J. CD40-CD40L interactions in atherosclerosis. Trends Cardiovasc Med, 2002, 12(1):27-32. WANG J H, ZHANG Y W, ZHANG P, et al. CD40 ligand as a potential biomarker for atherosclerotic instability. Neurol Res, 2013, 35(7):693-700. WU W K, LLEWELLYN O P, BATES D O, et al. IL-10 Regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology, 2010, 215(9):796-803. MCCARTHY C, DUFFY M M, MOONEY D, et al. IL-10 Mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis. FASEB J, 2013, 27(2):499-510. HERDER C, PEETERS W, ZIERER A, et al. TGF-β1 content in atherosclerotic plaques, TGF-β1 serum concentrations and incident coronary events. Eur J Clin Invest, 2012, 42(3): 329-337. GREENOW K, PEARCE N J, RAMJI D P. The key role of apolipoprotein E in atherosclerosis. J Mol Med (Berl), 2005, 83(5):329-342. ASARE Y, SCHMITT M, BERNHAGEN J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost, 2013, 109(3):391-398. PAN J H, SUKHOVA G K, YANG J T, et al. Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation, 2004, 109(25):3149-3153. SCHUCHARDT M, TOELLE M, HUANG T, et al. HDL Decreases MMP-9 activity in vascular smooth muscle cells via S1P3/TGFbeta cross activation. Cardiovasc Res, 2010, 87(suppl 1):89-135. SIASOS G, TOUSOULIS D, KIOUFIS S, et al. Inflammatory mechanisms in atherosclerosis: The impact of matrix metalloproteinases. Curr Top Med Chem, 2012, 12(10): 1132-1148. WGSTER D, ZHU C, BJRKEGREN J, et al. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-) Apob (100/100) mouse. Int J Mol Med, 2011, 28(2):247-253. CORRADO E, RIZZO M, COPPOLA G, et al. An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb, 2010, 17(1):1-11. WILSON A M, RYAN M C, BOYLE A J. The novel role of C-reactive protein in cardiovascular disease: Risk marker or pathogen. Int J Cardiol, 2006, 106(3):291-297. TEUPSER D, WEBER O, RAO T N, et al. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. J Biol Chem, 2011, 286(8):6272-6279. BUSCH M, ZERNECKE A. MicroRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis. J Mol Med (Berl), 2012, 90(8):877-885. JAMALUDDIN M S, WEAKLEY S M, ZHANG L, et al. miRNAs: Roles and clinical applications in vascular disease. Expert Rev Mol Diagn, 2011, 11(1):79-89.

基金

“重大新药创制”科技重大专项(2013ZX09103-001-008, 2012ZX09103-101-078);国际科技合作专项项目(2011DFR31240)
PDF(624 KB)

173

Accesses

0

Citation

Detail

段落导航
相关文章

/