[1]
|
VON HOFF D D�� ROZENCWEIG M. cis-Diamminedichloroplatinum(II)�� a metal complex with significant anticancer activity[J]. Adv Pharmacol Chemother�� 1979�� 16��273-298.
|
[2]
|
LIU H D�� WANG S L�� YE H Y�� et al. Pharmacokinetics of cisplatin implants with percutaneous liver insertion in the liver cancer therapy[J]. Chin Pharm J���й�ҩѧ��־���� 2010�� 45(22)��1753-1757.
|
[3]
|
SAAD A A�� YOUSSEF M I�� El-SHENNAWY L K.Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats�� The protective effect of grape seed proanthocyanidin extract[J]. Food and Chemical Toxicology�� 2009�� 47(7)��1499-1506.
|
[4]
|
WANG D�� LIPPARD S J. Cellular processing of platinum anticancer drugs[J]. Nat Rev Drug Discov�� 2005�� 4(4)��307-320.
|
[5]
|
RAZZAQUE M S. Cisplatin nephropathy�� Is cytotoxicity avoidable?[J] Nephrol Dial Transplant�� 2007�� 2(8)��2112-2116.
|
[6]
|
LIEBERTHAL W�� TRIACA V�� LEVINE J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells�� Apoptosis vs necrosis[J]. Am J Physiol�� 1996�� 270(4)��700-708.
|
[7]
|
FILIPSKI K K�� LOOS W J�� VERWEIJ J�� et al. Interaction of cisplatin with the human organic cation transporter 2[J]. Clin Cancer Res�� 2008�� 14(12)��3875-3880.
|
[8]
|
FILIPSKI K K�� MATHIJSSEN R H�� MIKKELSEN T S�� et al. Contribution of organic cation transporter 2 (OCT2)to cisplatin-induced nephrotoxicity[J]. Clin Pharmacol Ther�� 2009�� 86(4)��396-402.
|
[9]
|
WANG Z J�� YIN O Q�� TOMLINSON B�� et al. OCT2 polymorphisms and in vivo renal functional consequence�� Studies with metformin and cimetidine[J]. Pharmacogenet Genomics�� 2008�� 18(7)��637-645.
|
[10]
|
CIARIMBOLI G�� DEUSTER D�� KNIEF A�� et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions[J]. Am J Pathol�� 2010�� 176(3)��1169-1180.
|
[11]
|
YOKOO S�� YONEZAWA A�� MASUDA S�� et al. Differential contribution of organic cation transporters�� OCT2 and MATE1�� in platinum agent-induced nephrotoxicity[J]. Biochem Pharmacol�� 2007�� 74(3)��477-487.
|
[12]
|
NAKAMURA T�� YONEZAWA A�� HASHIMOTO S�� et al. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity[J]. Biochem Pharmacol�� 2010�� 80(11)��1762-1767.
|
[13]
|
LARSON C A�� BLAIR B G�� SAFAEI R�� et al. The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs[J]. Mol Pharmacol�� 2009�� 75(2)��324-330.
|
[14]
|
HOLZER A K�� SAMIMI G�� KATANO K�� et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells[J]. Mol Pharmacol�� 2004�� 66(4)��817-823.
|
[15]
|
JENDERNY S�� LIN H�� GARRETT T�� et al. Protective effects of a glutathione disulfide mimetic (NOV-002)against cisplatin induced kidney toxicity[J]. Biomed Pharmacother�� 2010�� 64(1)��73-76.
|
[16]
|
WAINFORD R D�� WEAVER R J�� STEAWRT K N�� et al. Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase�� not via a C-S lyase governed biotransformation pathway [J]. Toxicology�� 2008�� 249(2-3)��184-193.
|
[17]
|
KATAYAMA R�� NAGATA S�� IIDA H�� et al. Possible role of cysteine-S-conjugate ��-lyase in species differences in cisplatin nephrotoxicity[J]. Food Chem Toxicol�� 2011�� 49(9)��2053-2059.
|
[18]
|
PABLA N�� DONG Z. Cisplatin nephrotoxicity�� Mechanisms and renoprotective strategies[J]. Kidney Int�� 2008�� 73(9)��994-1007.
|
[19]
|
STRASSER A�� O��CONNOR L�� DIXIT V M. Apoptosis signaling[J]. Annu Rev Biochem�� 2000�� 69��217-245.
|
[20]
|
RAZZAQUE M S�� KOJI T�� KUMATORI A�� et al. Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system[J]. Histochem Cell Biol�� 1999�� 111(5)��359-365.
|
[21]
|
TSURUYA K�� NINOMIYA T�� TOKUMOTO M�� et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death[J]. Kidney Int�� 2003�� 63(1)��72-82.
|
[22]
|
RAMESH G�� REEVES W B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure[J]. Am J Physiol Renal Physiol�� 2003�� 285(4)��610-618.
|
[23]
|
PARK M S�� DE L M�� DEVARAJEN P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways[J]. J Am Soc Nephrol�� 2002�� 13(4)��858-865.
|
[24]
|
WEI Q�� DONG G�� FRANKLIN J�� et al. The pathological role of Bax in cisplatin nephrotoxicity[J]. Kidney Int�� 2007�� 72(1)��53-62.
|
[25]
|
JIANG M�� PABLA N�� MURPHY R F�� et al. Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation[J]. J Biol Chem�� 2007�� 282(4)��2636-2645.
|
[26]
|
LIU H�� BALIGA R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis[J]. J Am Soc Nephrol�� 2005�� 16(7)��1985-1992.
|
[27]
|
PEYROU M�� HANNA P E�� CRIBB A E. Cisplatin�� gentamicin�� and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys[J]. Toxicol Sci�� 2007�� 99(1)��346-353.
|
[28]
|
JIANG M�� WEI Q�� WANG J�� et al. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis[J]. Oncogene�� 2006�� 25(29)��4056-4066.
|
[29]
|
CHIPUK J E�� KUWANA T�� BOUCHIER H L�� et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis[J]. Science�� 2004�� 303(5660)��1010-1014.
|
[30]
|
SETH R�� YANG C�� KAU V�� et al. p53-Dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury[J]. J Biol Chem�� 2005�� 280(35)��31230-31239.
|
[31]
|
WEI Q�� DONG G�� YANG T�� et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity[J]. Am J Physiol Renal Physiol�� 2007�� 293(4)��1282-1291.
|
[32]
|
MEGYESI J�� SAFIRSTEIN R L�� PRICE P M. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure[J]. J Clin Invest�� 1998�� 101(4)��777-782.
|
[33]
|
YU F�� MEGYESI J�� SAFIRSTEIN R L�� et al. Identification of the functional domain of p21(WAF1/CIP1)that protects cells from cisplatin cytotoxicity[J]. Am J Physiol Renal Physiol�� 2005�� 289(3)�� 514-520.
|
[34]
|
YU F�� MEGYESI J�� SAFIRSTEIN R L�� et al. Involvement of the CDK2-E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo[J]. Am J Physiol Renal Physiol�� 2007�� 293(1)��52-59.
|
[35]
|
YANG Q H�� LIU D W�� LONG Y�� et al. Acute renal failure during sepsis�� Potential role of cell cycle regulation[J]. J Infect�� 2009�� 58(6)��459-464.
|
[36]
|
HE G�� KUANG J�� KHOKHAR A R�� et al. The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV)analog[J]. Gynecol Oncol�� 2011�� 122(2)��402-409.
|
[37]
|
HODEIFY R�� TARCSAFALVI A�� MEGYESI J�� et al. Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity[J]. Am J Physiol Renal Physiol�� 2011�� 300(5)��1171-1179.
|
[38]
|
ZHUANG S�� SCHNELLMANN R G. A death-promoting role for extracellular signal-regulated kinase[J]. J Pharmacol Exp Ther�� 2006�� 319(3)��991-997.
|
[39]
|
KIM Y K�� KIM H J�� KWON C H�� et al. Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells[J]. J Appl Toxicol�� 2005�� 25(5)��374-382.
|
[40]
|
NOWAK G. PROTEIN D C-alpha and ERK1/2 mediate mitochondrial dysfunction�� decreases in active Na+ transport�� and cisplatin-induced apoptosis in renal cells[J]. J Biol Chem�� 2002�� 277(45)��43377-43388.
|
[41]
|
CLARK J S�� FAISAL A�� BALIGA R�� et al. Cisplatin induces apoptosis through the ERK-p66shc pathway in renal proximal tubule cells[J]. Cancer Lett�� 2010�� 297(2)��165-170.
|
[42]
|
ARANY I�� MEGYESI J K�� KANETO H�� et al. Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells[J]. Am J Physiol Renal Physiol�� 2004�� 287(3)��543-549.
|
[43]
|
RAMESH G�� REEVES W B. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice[J]. Am J Physiol Renal Physiol�� 2005�� 289(1)��166-174.
|
[44]
|
MISHIMA K�� BABA A�� MATSUO M�� et al. Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity[J]. Free Radic Biol Med�� 2006�� 40(9)��1564-1577.
|
[45]
|
YANO T�� ITOH Y�� MATSUO M�� et al. Involvement of both tumor necrosis factor-alpha-induced necrosis and p53-mediated caspase-dependent apoptosis in nephrotoxicity of cisplatin[J]. Apoptosis�� 2007�� 12(10)��1901-1909.
|
[46]
|
SHEIKH H D�� CACINI W�� BUCKLEY A R�� et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney[J]. Arch Toxicol�� 2004�� 78(3)��147-155.
|
[47]
|
FRANCESCATO H D�� COSTA R S�� JU��NIOR F B�� et al. Effect of JNK inhibition on cisplatin-induced renal damage[J]. Nephrol Dial Transplant�� 2007�� 22(8)��2138-2148.
|
[48]
|
BALIGA R�� UEDA N�� WALKER P D�� et al. Oxidant mechanisms in toxic acute renal failure[J]. Drug Metab Rev�� 1999�� 31(4)��971-997.
|
[49]
|
KUHAD A�� TIRKEY N�� PILKHWAL S�� et al. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats[J]. Ren Fail�� 2006�� 28(3)��247-254.
|
[50]
|
SIDDIK Z H. Cisplatin�� Mode of cytotoxic action and molecular basis of resistance[J]. Oncogene�� 2003�� 22(47)�� 7265-7279.
|
[51]
|
HUANG Q�� DUNN R T 2nd�� JAYADEV S�� et al. Assessment of cisplatin-induced nephrotoxicity by microarray technology[J]. Toxicol Sci�� 2001�� 63(2)��196-207.
|
[52]
|
TIKOO K�� ALI I Y�� GUPTA J�� et al. 5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein�� pAKT and DNMT1 expression in chemical induced cancer rats[J]. Toxicol Lett�� 2009�� 191(2-3)��158-166.
|
[53]
|
KRUIDERING M�� VAN DE WATER B�� DE HEER E�� et al. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells�� Mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain[J]. J Pharmacol Exp Ther�� 1997�� 280(2)��638-649.
|
[54]
|
GUERRERO-BELTR�cN C E�� CALDER�YN-OLIVER M�� MART��NEZ-ABUNDIS E�� et al. Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H��Quinone oxidoreductase 1 and �� glutamyl cysteine ligase�� Studies in mitochondria isolated from rat kidney and in LLC-PK1 cells[J]. Toxicol Lett�� 2010�� 199(1)��80-92.
|
[55]
|
BALIGA R�� ZHANG Z�� BALIGA M�� et al. Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity[J]. Kidney Int�� 1998�� 54(5)��1562-1569.
|
[56]
|
LIU H�� BALIGA R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis[J]. Kidney Int�� 2003�� 63(5)��1687-1696.
|
[57]
|
ATASAYAR S�� G�zRER-O H�� ORHAN H�� et al. Preventive effect of aminoguanidine compared to vitamin E and C on cisplatin-induced nephrotoxicity in rats[J]. Exp Toxicol Pathol�� 2009�� 61(1)��23-32.
|
[58]
|
AJITH T A�� ABHISHEK G�� ROSHNY D�� et al. Co-supplementation of single and multi doses of vitamins C and E ameliorates cisplatin-induced acute renal failure in mice[J]. Exp Toxicol Pathol�� 2009�� 61(6)��565-571.
|
[59]
|
FUJIEDA M�� NARUSE K�� HAMAUZU T�� et al. Effect of selenium on Cisplatin-induced nephrotoxicity in rats[J]. Nephron Exp Nephrol�� 2006�� 104(3)��112-122.
|
[60]
|
CHAKRABORTY P�� ROY S S�� SK U H�� et al. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate[J]. Free Radic Res�� 2011�� 45(2)��177-187.
|
[61]
|
ARJUMAND W�� SETH A�� SULTANA S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NF��B�� TNF-�� and caspase-3 expression in wistar rats[J]. Food Chem Toxicol�� 2011�� 49(9)��2013-2021.
|
[62]
|
WEIJL N I�� ELSENDOORN T J�� LENTJES E G�� et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy�� A randomised�� double-blind�� placebo-controlled study[J]. Eur J Cancer�� 2004�� 40(11)��1713-1723.
|
[63]
|
BRITO C�� NAVILIAT M�� TISCORNIA A C�� et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death[J]. J Immunol�� 1999�� 162(6)��3356-3366.
|
[64]
|
IKARI A�� NAGATANI Y�� TSUKIMOTO M�� et al. Sodium-dependent glucose transporter reduces peroxynitrite and cell injury caused by cisplatin in renal tubular epithelial cells[J]. Biochim Biophys Acta�� 2005�� 1717(2)��109-117.
|
[65]
|
GULEC M�� IRAZ M�� YILMAZ H R�� et al. The effects of ginkgo biloba extract on tissue adenosine deaminase�� xanthine oxidase�� myeloperoxidase�� malondialdehyde�� and nitric oxide in cisplatin-induced nephrotoxicity[J]. Toxicol Ind Health�� 2006�� 22(3)��125-130.
|
[66]
|
RAMESH G�� REEVERS W B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity[J]. J Clin Invest�� 2002�� 110(6)��835-842.
|
[67]
|
ZHANG B�� RAMESH G�� NORBURY C C�� et al. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells[J]. Kidney Int�� 2007�� 72(1)��37-44.
|
[68]
|
DONG Z�� ATHERTON S S. Tumor necrosis factor-alpha in cisplatin nephrotoxicity�� A homebred foe? [J].Kidney Int�� 2007�� 72(1)��5-7.
|
[69]
|
DOGUKAN A�� TUZCU M�� AGCA C A�� et al. A tomato lycopene complex protects the kidney from cisplatin-induced injury via affecting oxidative stress as well as Bax�� Bcl-2�� and HSPs expression[J]. Nutr Cancer�� 2011�� 63(3)��427-434.
|
[70]
|
KONG Q Z�� HUANG T�� FEI Y�� et al. Protection of astragalus membranaceus against cisplatininduced nephrotoxicity in mice[J]. Chin Pharm J���й�ҩѧ��־���� 1999�� 34(7)��447-450.
|