降脂药物的潜在作用靶点——酰基辅酶A-胆固醇酰基转移酶

郭晶 方莲花 杜冠华

中国药学杂志 ›› 2010, Vol. 45 ›› Issue (13) : 966-969.

PDF(680 KB)
PDF(680 KB)
中国药学杂志 ›› 2010, Vol. 45 ›› Issue (13) : 966-969.
综 述

降脂药物的潜在作用靶点——酰基辅酶A-胆固醇酰基转移酶

  • 郭晶,方莲花*,杜冠华
作者信息 +
文章历史 +

摘要

目的 阐述酰基辅酶A-胆固醇酰基转移酶(acyl-coenzyme A: cholesterol acyltransferase,ACAT)的发现、结构、组织分布、生物学特征、与脂代谢相关疾病的关系及其抑制剂的研究进展,探讨ACAT抑制剂的临床应用前景,为脂代谢相关疾病提供新的药物作用靶点与治疗策略。方法 查阅近年来国内外的ACAT相关的文献,对ACAT进行综述。结果结论 ACAT是在体内控制胆固醇代谢的关键酶,与高脂血症、动脉粥样硬化、阿尔茨海默病等心脑血管疾病的发生和发展密切相关。ACAT抑制剂有望成为一类新型的治疗高胆固醇血症、动脉粥样硬化、阿尔茨海默病的药物。

关键词

胆固醇酰基转移酶 / 酰基辅酶A-胆固醇酰基转移酶 / 靶点 / 抑制剂 / 降脂药物 / 动脉粥样硬化 / 阿尔茨海默病

引用本文

导出引用
郭晶 方莲花 杜冠华. 降脂药物的潜在作用靶点——酰基辅酶A-胆固醇酰基转移酶[J]. 中国药学杂志, 2010, 45(13): 966-969

参考文献


[1] CHANG C C, HUH H Y, CADIGAN K M, et al. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells[J]. J Biol Chem, 1993, 268(28): 20747-20755.
[2] KINNUNEN P M, DEMICHELE A, LANGE L G. Chemical modification of acyl-CoA:cholesterol O-acyltransferase. 1. Identification of acyl-CoA:cholesterol O-acyltransferase subtypes by differential diethyl pyrocarbonate sensitivity[J]. Biochemistry, 1988, 27(19): 7344-7350.
[3] MEINER V, TAM C, GUNN M D, et al. Tissue expression studies on the mouse acyl-CoA: cholesterol acyltransferase gene (Acact): findings supporting the existence of multiple cholesterol esterification enzymes in mice[J]. J Lipid Res, 1997, 38(9): 1928-1933.
[4] CASES S, NOVAK S, ZHENG Y W, et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization[J]. J Biol Chem, 1998, 273(41): 26755-26764.
[5] LEON C, HILL J S, WASAN K M. Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) inhibitors as hypolipidemic and antiatherosclerosis drugs[J]. Pharm Res, 2005, 22(10): 1578-1588.
[6] RUDEL L L, LEE R G, COCKMAN T L. Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis[J]. Curr Opin Lipidol, 2001, 12(2): 121-127.
[7] CHENG D, CHANG C C, QU X, et al. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system[J]. J Biol Chem, 1995, 270(2): 685-695.
[8] GUO Z Y, LIN S, HEINEN J A, et al. The active site His-460 of human acyl-coenzyme A:cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain[J]. J Biol Chem, 2005, 280(45): 37814-37826.
[9] JOYCE C W, SHELNESS G S, DAVIS M A, et al. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane[J]. Mol Biol Cell, 2000, 11(11): 3675-3687.
[10] LIN S, LU X, CHANG C C, et al. Human acyl-coenzyme A:cholesterol acyltransferase expressed in chinese hamster ovary cells: membrane topology and active site location[J]. Mol Biol Cell, 2003, 14(6): 2447-2460.
[11] SAKASHITA N, MIYAZAKI A, TAKEYA M, et al. Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues[J]. Am J Pathol, 2000, 156(1): 227-236.
[12] REPA J J, BUHMAN K K, FARESE R V Jr, et al. ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis[J]. Hepatology, 2004, 40(5): 1088-1097.
[13] SAKASHITA N, MIYAZAKI A, CHANG C C, et al. Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is induced in monocyte-derived macrophages: in vivo and in vitro studies[J]. Lab Invest, 2003, 83(11): 1569-1581.
[14] CHANG C, DONG R, MIYAZAKI A, et al. Human acyl-CoA:cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis[J]. Acta Biochim Biophys Sin (生物化学与生物物理学报), 2006, 38(3): 151-156.
[15] WANG Q, LIU Z G, TIAN J, et al. The study on cholesterol induced unfolded protein response and acyl-CoA cholesterol acyltransferase-2 expression[J]. Chin J Arterioscler(中国动脉硬化杂志), 2007, 15(4): 253-255.
[16] MAZIERE C, BARBU V, AUCLAIR M, et al. Interleukin 1 stimulates cholesterol esterification and cholesterol deposition in J774 monocytes-macrophages[J]. Biochim Biophys Acta, 1996, 1300(1): 30-34.
[17] YANG J B, DUAN Z J, YAO W, et al. Synergistic transcriptional activation of human acyl-coenzyme A: cholesterol acyltransterase-1 gene by interferon-gamma and all-trans-retinoic acid THP-1 cells[J]. J Biol Chem, 2001, 276(24): 20989-20998.
[18] HORI M, MIYAZAKI A, TAMAGAWA H, et al. Up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 by transforming growth factor-beta1 during differentiation of human monocytes into macrophages[J]. Biochem Biophys Res Commun, 2004, 320(2): 501-505.
[19] FURUKAWA K, HORI M, OUCHI N, et al. Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages[J]. Biochem Biophys Res Commun, 2004, 317(3): 831-836.
[20] PRAMFALK C, DAVIS M A, ERIKSSON M, et al. Control of ACAT2 liver expression by HNF1[J]. J Lipid Res, 2005, 46(9): 1868-1876.
[21] YANG L, YANG J B, CHEN J, et al. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone[J]. Cell Res, 2004, 14(4): 315-323.
[22] BAI Z, CHENG B, YU Q, et al. Effects of leptin on expression of acyl-coenzymea: cholesterol acyltransferases-1 in cultured human monocyte-macrophages[J]. J Huazhong Univ Sci Technolog Med Sci(华中科技大学学报:医学版), 2004, 24(6): 563-565, 590.
[23] YAGYU H, KITAMINE T, OSUGA J, et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia[J]. J Biol Chem, 2000, 275(28): 21324-21330.
[24] RUDEL L L, LEE R G, PARINI P. ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia[J]. Arterioscler Thromb Vasc Biol, 2005, 25(6): 1112-1118.
[25] FAZIO S, MAJOR A S, SWIFT L L, et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages[J]. J Clin Invest, 2001, 107(2): 163-171.
[26] RONG J X, KUSUNOKI J, OELKERS P, et al. Acyl-coenzymeA (CoA):cholesterol acyltransferase inhibition in rat and human aortic smooth muscle cells is nontoxic and retards foam cell formation[J]. Arterioscler Thromb Vasc Biol, 2005, 25(1): 122-127.
[27] IKENOYA M, YOSHINAKA Y, KOBAYASHI H, et al. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plasma cholesterol levels[J]. Atherosclerosis, 2007, 191(2): 290-297.
[28] HUTTER-PAIER B, HUTTUNEN H J, PUGLIELLI L, et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer′s disease[J]. Neuron, 2004, 44(2): 227-238.
[29] HUTTUNEN H J, KOVACS D M. ACAT as a drug target for Alzheimer′s disease[J]. Neurodegener Dis, 2008, 5(3-4): 212-214.
[30] HUTTUNEN H J, PEACH C, BHATTACHARYYA R, et al. Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway[J]. FASEB J, 2009, 23(11): 3819-3828.
[31] DING D R, SHEN J K. Current status of studies on Acy1-CoA:Cholesterol Acyltransferase(ACAT)inhibitors[J]. Chine New Drugs J(中国新药杂志), 2005, 14(4): 396-399.
[32] GIOVANNONI M P, PIAZ V D, VERGELLI C, et al. Selective ACAT inhibitors as promising antihyperlipidemic, antiathero-sclerotic and anti-Alzheimer drugs[J]. Mini Rev Med Chem, 2003, 3(6): 576-584.
[33] JUNQUERO D, OMS P, CARILLA-DURAND E, et al. Pharmacological profile of F 12511, (S)-2′,3′, 5′-trimethyl-4′-hydroxy-alpha-dodecylthioacetanilide a powerful and systemic acylcoenzyme A: cholesterol acyltransferase inhibitor[J]. Biochem Pharmacol, 2001, 61(1): 97-108.
[34] ASANO S, BAN H, KINO K, et al. Synthesis and structure-activity relationships of N-(4-amino-2,6-diisopropylphenyl)-N′-(1,4-diarylpiperidine-4-yl)methylureas as anti-hyperlipidemic agents[J]. Bioorg Med Chem, 2009, 17(13): 4636-4646.
[35] MATSUDA D, OHSHIRO T, OHBA M, et al. The molecular target of rubimaillin in the inhibition of lipid droplet accumulation in macrophages[J]. Biol Pharm Bull, 2009, 32(8): 1317-1320.
[36] MIIKE T, SHIRAHASE H, JINO H, et al. Effects of an anti-oxidative ACAT inhibitor on apoptosis/necrosis and cholesterol accumulation under oxidative stress in THP-1 cell-derived foam cells[J]. Life Sci, 2008, 82(1-2): 79-84.
PDF(680 KB)

Accesses

Citation

Detail

段落导航
相关文章

/