吩噻嗪类化合物的合成及其生物活性研究进展

田诗意, 方方

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (18) : 1504-1511.

PDF(1180 KB)
PDF(1180 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (18) : 1504-1511. DOI: 10.11669/cpj.2022.18.002
综述

吩噻嗪类化合物的合成及其生物活性研究进展

  • 田诗意1, 方方1,2*
作者信息 +

Research Progress in the Synthesis and Biological Activity of Phenothiazines

  • TIAN Shi-yi1, FANG Fang1,2*
Author information +
文章历史 +

摘要

吩噻嗪是含杂原子的三环化合物,于19世纪后半叶在染料工业中发现并被应用。近年来,陆续发现以吩噻嗪结构为母核的部分衍生物具有抗癌、抗菌、抗阿尔兹海默症、抗氧化以及抗病毒等多种药理活性。笔者综述了吩噻嗪类化合物的合成及其相关生物活性研究进展,总结不同活性类型吩噻嗪衍生物的构效关系,为吩噻嗪类化合物的深入系统研究提供参考。

Abstract

Phenothiazine is a hetero-atomic tricyclic derivative, which was first discovered and applied in the dye industry in the second half of the 19th century. In recent years, some derivatives with phenothiazine structure as parent nucleus have been found to have a variety of pharmacological activities, such as anti-cancer, antibacterial,anti-Alzheimer, anti-oxidation and anti-virus activities. In order to provide reference for the in-depth systematic research of phenothiazine compounds, this article reviews the research progress in the synthesis of phenothiazine compounds and their related biological activities, and the structure-activity relationship of phenothiazine derivatives with different activity types is summarized.

关键词

吩噻嗪 / 生物活性 / 构效关系

Key words

phenothiazine / biological activity / structure-activity relationship

引用本文

导出引用
田诗意, 方方. 吩噻嗪类化合物的合成及其生物活性研究进展[J]. 中国药学杂志, 2022, 57(18): 1504-1511 https://doi.org/10.11669/cpj.2022.18.002
TIAN Shi-yi, FANG Fang. Research Progress in the Synthesis and Biological Activity of Phenothiazines[J]. Chinese Pharmaceutical Journal, 2022, 57(18): 1504-1511 https://doi.org/10.11669/cpj.2022.18.002
中图分类号: R914   

参考文献

[1] JASZCZYSZYN A, GASIOROWSKI K, S′WIATEK P, et al. Chemical structure of phenothiazines and their biological activity[J]. Pharmacol Rep, 2012, 64(1):16-23.
[2] ZACCAGNINI L, ROSSETTI G, TRAN T H, et al. In silico/invitro screening and hit evaluation identified new phenothiazine anti-prion derivatives[J]. Eur J Med Chem, 2020, 196. Doi:10.1016/j.ejmech.2020.112295.
[3] SALIE S, LABUSCHAGNé A, WALTERS A, et al. In vitro and in vivo toxicity evaluation of non-neuroleptic phenothiazines, antitubercular drug candidates[J]. Regul Toxicol Pharmacol, 2019. Doi:10.1016/j.yrtph.2019.104508.
[4] SARMIENTO G P, MARTINI M F, VITALE R G, et al. N-haloacetyl phenothiazines and derivatives:preparation, characterization and structure-activity relationship for antifungal activity[J]. Arab J Chem, 2017, 12(1):21-32.
[5] MORAK-MŁODAWSKA B, PLUTA K, LATOCHA M, et al. Synthesis, spectroscopic characterization, and anticancer activity of new 10-substituted 1,6-diazaphenothiazines[J]. Med Chem Res, 2016, 25(11):2425-2433.
[6] PLUTA K, JELEŃ M, MORAK-MŁODAWSKA B, et al. Azaphenothiazines-promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties[J]. Eur J Med Chem, 2017, 138:774-806. Doi:10.1016/j.ejmech.2017.07.009.
[7] LIU Y T, SONG S M, YIN J Y, et al. Progress of studieson phenothiazine compunds[J].Chem World(化学世界), 2015, 56(9):564-568,574.
[8] ONOABEDJE E A, EGU S A, EZEOKONKWO M A, et al. Highlights of molecular structures and applications of phenothiazine & phenoxazine polycycles[J]. J Mol Struct, 2019, 1175:956-962. Doi:10.1016/j.molstruc.2018.08.064.
[9] SILBERG I A, CORMOS G, ONICIU D C. Retrosynthetic approach to the synthesis of phenothiazines[J]. Adv Heterocycl Chem, 2010, 37(38):205-237.
[10] CHEN J, LI G, XIE Y, et al. Four-Component approach to N-Substituted phenothiazines under transition-metal-free Conditions[J]. Org Lett, 2015, 17(23):5870-5873.
[11] HU W Y, ZHANG S L. Method for the synthesis of phenothiazines via a domino iron-catalyzed C-S/C-N cross-coupling reaction[J]. J Org Chem, 2015, 80(12):6128-6132.
[12] CHEN Q H,XIE R,JIA H H, et al. Access to phenothiazine derivatives via iodide-mediated oxidative three-component annulation reaction[J]. J Org Chem, 2020, 85(8):5629-5637.
[13] GHORAB M M, ALSAID M S, SAMIR N, et al. Aromatase inhibitors and apoptotic inducers:Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules[J]. Eur J Med Chem, 2017, 134:304-315. Doi:10.1016/j.ejmech.2017.04.028.
[14] PLUTA K, SZMIELEW M, SUWIŃ SKA K, et al. Synthesis, spectroscopic structure identification, X-ray study and anticancer activities of new angularly fused quinobenzothiazines[J]. J Mol Struct, 2016, 1122:62-71. Doi:10.1016/j.molstruc.2016.05.082.
[15] JELEŃ M, PLUTA K, ZIMECKI M, et al. 6-Substituted9-fluoroquino [3,2-b] benzo [1,4] thiazines display strong antiproliferative and antitumor properties[J]. Eur J Med Chem, 2015, 89:411-420. Doi:10.1016/j.ejmech.2014.10.070.
[16] VÖGERL K, ONG N, SENGER J, et al. Synthesis and biological investigation of phenothiazine-based benzhydroxamic acids as selective histone deacetylase 6 inhibitors[J]. J Med Chem, 2019, 62(3):1138-1166.
[17] GAO Y, SUN T Y, BAI W F, et al. Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells[J]. Eur J Med Chem, 2019. Doi:10.1016/j.ejmech.2019.111692.
[18] KRISHNAN K G, KUMAR C U, LIM W M, et al. Novel cyanoacetamide integrated phenothiazines:synthesis, characterization, computational studies and in vitro antioxidant and anticancer evaluations[J]. J Mol Struct, 2019. Doi:10.1016/j.molstruc.2019.127037.
[19] CIBOTARU S, NASTASA V, SANDU A I, et al. Pegylation of phenothiazine-A synthetic route towards potent anticancer drugs[J]. J Adv Res, 2022, 37: 279-290. Doi:10.1016/j.jare.2021.07.003.
[20] KANG S, LEE J M, JEON B, et al. Repositioning of the antipsychotic trifluoperazine:synthesis, biological evaluation and in silico study of trifluoperazineanalogs as anti-glioblastoma agents[J]. Eur J Med Chem, 2018, 151:186-198. Doi:10.1016/j.ejmech.2018.03.055.
[21] MOISE I M, BÎCU E, FARCE A, et al. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity[J]. Bioorg Chem, 2020, 103. Doi:10.1016/j.bioorg.2020.104184.
[22] TANISHAS, MAY L L, CHUN W M, et al. Design, synthesis and characterisation of novel phenothiazine-based triazolopyridine derivatives:evaluation of anti-breast cancer activity on human breast carcinoma[J]. Chem Select, 2019, 4(43):12701-12707.
[23] HE C X, MENG H, ZHANG X, et al. Synthesis and bio-evaluation of phenothiazine derivatives as new anti-tuberculosis agents[J]. Chin Chem Lett(中国化学快报), 2015, 26(8):951-954.
[24] GAUTAM N, GUPTA S, AJMERA N, et al. Synthesis, characterization, and biological evaluation of 10H-phenothiazines, their sulfones and ribofuranosides[J]. J Heterocycl Chem, 2012, 49(3):710-715.
[25] ADDLA D, JALLAPALLY A, GURRAM D, et al. Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids[J]. Bioorg Med Chem Lett, 2013, 24(1):233-236.
[26] REDDYRAJULA R, DALIMBA U, KUMAR S M. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents:design, synthesis, molecular docking and in silico ADME studies[J]. Eur J Med Chem, 2019, 168:263-282. Doi:10.1016/j.ejmech.2019.02.010.
[27] RAMPRASAD J, NAYAK N, DALIMBA U. Design of new phenothiazine-thiadiazole hybrids via molecular hybridization approach for the development of potent antitubercular agents[J]. Eur J Med Chem, 2015, 106:75-84. Doi:10.1016/j.ejmech.2015.10.035.
[28] KUSHWAHA K, SAKHUJA R, JAIN S C. Synthesis and antimicrobial activity of novel bis-azaphenothiazines[J]. Med Chem Res, 2013, 22(9):4459-4467.
[29] RONCO T, JRGENSEN N S, HOLMER I, et al. A novel promazine derivative shows high in vitro and in vivoantimicrobial activity against staphylococcus aureus[J]. Front Microbiol, 2020. Doi:10.3389/fmicb.2020.560798.
[30] JELEŃ M, BAVAVEA E I, PAPPA M, et al. Synthesis of quinoline/naphthalene-containing azaphenothiazines and their potent in vitro antioxidant properties[J]. Med Chem Res, 2015, 24(4):1725-1732.
[31] HUI A L, CHEN Y, ZHU S J, et al. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer′s disease[J]. Med Chem Res, 2014, 23(7):3546-3557.
[32] GORECKI L, ULIASSI E, BARTOLINI M, et al. Phenothiazine-tacrine heterodimers:pursuing multitarget directed approach in alzheimer′s disease[J]. ACS Chem Neurosci, 2021, 12(9):1698-1715.
[33] WESTON S, COLEMAN C M, HAUPT R, et al. Broad anti-coronavirus activity of food and drug administration-approveddrugs against SARS-CoV-2 in vitro and SARS-CoV in vivo[J]. J Virol, 2020, 94(21):e01218-e01220.
[34] PLAZE M, ATTALI D, PROT M, et al. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine[J]. Int J Antimicrob Agents, 2021, 57(3). Doi:10.1016/j.ijantimicag.2020.106274.

基金

安徽省高等学校自然科学研究重点项目资助(KJ2019A1004)
PDF(1180 KB)

Accesses

Citation

Detail

段落导航
相关文章

/