单抗制剂多维度稳定性分析

郭莎, 张峰, 于传飞, 武刚, 崔永霏, 王兰

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (15) : 1241-1248.

PDF(2596 KB)
PDF(2596 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (15) : 1241-1248. DOI: 10.11669/cpj.2021.15.009
论著

单抗制剂多维度稳定性分析

  • 郭莎, 张峰, 于传飞, 武刚, 崔永霏, 王兰*
作者信息 +

Multi-Dimensional Stability Analysis of Monoclonal Antibodies

  • GUO Sha, ZHANG Feng, YU Chuan-fei, WU Gang, CUI Yong-fei, WANG Lan*
Author information +
文章历史 +

摘要

目的 单克隆抗体(单抗)的稳定性是抗体成药性研究中的重要内容,本研究拟探讨从单抗分子的结构稳定性、胶体稳定性及分子间弱相互作用等方面进行稳定性评价的意义。方法 本研究以曲妥珠、利妥昔及贝伐珠为例,从不同角度表征了这3种单抗的稳定性特点,展示了单抗分子稳定性评价的多种维度和思路。首先,通过检测蛋白内源性荧光(intrinsic fluorescence,IF)技术测得熔解温度(melting temperature,Tm),对抗体分子的结构稳定性进行评估。其次,采用静态光散射技术(static light scattering technique,SLS)预测抗体的胶体稳定性。随后,采用等温稳定性试验(60 ℃, 48 h)对样品的稳定性表现进行实时监测。最后,采用动态光散射技术(dynamic light scattering technique,DLS)从蛋白溶解状态下其自身分子间弱相互作用角度预测蛋白聚集倾向。结果 IF技术检测发现3种抗体分子第1个熔解温度Tm1均在65 ℃以上,说明其结构均较稳定。SLS检测显示曲妥珠胶体稳定性最好,升温至95 ℃未检测到明显的聚集信号,而利妥昔和贝伐珠则在70 ℃左右出现明显聚集。等温稳定性试验也显示了类似的结果。DLS技术检测显示,曲妥珠的第二维里系数(B22)和扩散相互作用系数(KD)均为正值(3.19×10-3和65.46),预示长期胶体稳定性较好,利妥昔次之,而贝伐珠的B22KD均为负值(-1.44×10-4和-6.46),提示蛋白分子间容易自缔合。结论 本研究通过多种技术、从多种角度探讨了单抗药物稳定性评价的内容、层次和深度,为抗体分子筛选、制剂配方优化、抗体分子与制剂配方间的不同组合,以及稳定性监测等提供了借鉴和参考。

Abstract

OBJECTIVE To explore the significance of stability evaluation of monoclonal antibodies (mAbs), an important part of druggability of mAbs, from the aspects of structural stability, colloidal stability and weak intermolecular interaction. METHODS Taking trastuzumab, rituximab and bevacizumab as examples, the stability characteristics of the three mAbs were explored from different aspects, thus to demonstrate various dimensions of stability evaluation of mAbs. Firstly, the structural stability of antibody molecules was evaluated by detecting the melting temperature (Tm) through intrinsic fluorescence (IF). Secondly, static light scattering technique (SLS) was used to predict the colloidal stability of mAbs. Subsequently, isothermal stability tests (60 ℃, 48 h) were used to monitor the stability performance of the samples in real time. Lastly, dynamic light scattering technique (DLS) was used to predict protein aggregation tendency from the point of weak intermolecular interaction of dissolved proteins. RESULTS IF detection showed that the first melting temperature (Tm1) of the three mAbs were all above 65 ℃, indicating that their structures were stable. SLS detection showed that trastuzumab had the best colloidal stability since no obvious aggregation signal was detected at 95 ℃, while rituximab and bevacizumab showed obvious aggregation at about 70 ℃. The isothermal stability test also showed similar results. The application of DLS techniques showed that the second virial coefficient (B22) and diffusion interaction coefficient (KD) of trastuzumab were positive (3.19×10-3, 65.46), indicating better long term colloidal stability, rituximab was suboptimal, while the B22 and KD of bevacizumab were both negative (-1.44×10-4,-6.46), suggesting that the molecules were prone to be self-associated. CONCLUSION In this paper, the contents, levels and depth of the stability evaluation of mAbs are characterized by various techniques and discussed from multi-aspects, which provides reference for antibody molecular screening, formulation optimization, different combinations between antibody molecules and formulations, stability evaluation and so on.

关键词

单克隆抗体 / 结构稳定性 / 胶体稳定性 / 分子间弱相互作用

Key words

monoclonal antibody / structural stability / colloidal stability / weak intermolecular interaction

引用本文

导出引用
郭莎, 张峰, 于传飞, 武刚, 崔永霏, 王兰. 单抗制剂多维度稳定性分析[J]. 中国药学杂志, 2021, 56(15): 1241-1248 https://doi.org/10.11669/cpj.2021.15.009
GUO Sha, ZHANG Feng, YU Chuan-fei, WU Gang, CUI Yong-fei, WANG Lan. Multi-Dimensional Stability Analysis of Monoclonal Antibodies[J]. Chinese Pharmaceutical Journal, 2021, 56(15): 1241-1248 https://doi.org/10.11669/cpj.2021.15.009
中图分类号: R917   

参考文献

[1] RYMAN J T, MEIBOHM B. Pharmacokinetics of Monoclonal Antibodies[J]. CPT Pharmacometrics Syst Pharmacol, 2017,6(9):576-588.
[2] CROMWELL M E, HILARIO E, JACOBSON F. Protein aggregation and bioprocessing[J]. AAPS J, 2006,8(3):e572-e579.
[3] BRADER M L, ESTEY T, BAI S, et al. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies[J]. Mol Pharm, 2015,12(4):1005-1017.
[4] WANG W, SINGH S, ZENG D L, et al. Antibody structure, instability, and formulation[J]. J Pharm Sci, 2007,96(1):1-26.
[5] HARRISON J S, GILL A, HOARE M. Stability of a single-chain Fv antibody fragment when exposed to a high shear environment combined with air-liquid interfaces[J]. Biotechnol Bioeng, 1998,59(4):517-519.
[6] TASCHNER N, MULLER S A, ALUMELLA V R, et al. Modulation of antigenicity related to changes in antibody flexibility upon lyophilization[J]. J Mol Biol, 2001,310(1):169-179.
[7] BRAUN A, KWEE L, LABOW M A, et al. Protein Aggregates Seem to Play a Key Role Among the Parameters Influencing the Antigenicity of Interferon Alpha (IFN-α) in Normal and Transgenic Mice[J]. Pharml Res, 1997,14(10):1472-1478.
[8] ROBINSON M J, MATEJTSCHUK P, BRISTOW A F, et al. Tm-Values and Unfolded Fraction Can Predict Aggregation Rates for Granulocyte Colony Stimulating Factor Variant Formulations but Not under Predominantly Native Conditions[J]. Mol Pharm, 2018,15(1):256-267.
[9] ERICSSON U B, HALLBERG B M, DETITTA G T, et al. Thermofluor-based high-throughput stability optimization of proteins for structural studies[J]. Anal Biochem, 2006,357(2):289-298.
[10] SVILENOV H, MARKOJA U, WINTER G. Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations[J]. Eur J Pharm Biopharm, 2018,125:106-113.
[11] JOHNSON C M. Differential scanning calorimetry as a tool for protein folding and stability[J]. Arch Biochem Biophys, 2013,531(1-2):100-109.
[12] MAHLER H C, FRIESS W, GRAUSCHOPF U, et al. Protein aggregation: pathways, induction factors and analysis[J]. J Pharm Sci, 2009,98(9):2909-2934.
[13] MANNO M, CRAPARO E F, PODESTA A, et al. Kinetics of different processes in human insulin amyloid formation[J]. J Mol Biol, 2007,366(1):258-274.
[14] SHIRE S J, SHAHROKH Z, LIU J. Challenges in the development of high protein concentration formulations[J]. J Pharm Sci, 2004,93(6):1390-1402.
[15] SALUJA A, FESINMEYER R M, HOGAN S, et al. Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation[J]. Biophys J, 2010, 99(8):2657-2665.
[16] BRUMMITT R K, NESTA D P, CHANG L, et al. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates[J]. J Pharm Sci, 2011,100(6):2087-2103.
[17] CONNOLLY B D, PETRY C, YADAV S, et al. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter[J]. Biophys J, 2012,103(1):69-78.
[18] LEHERMAYR C, MAHLER H C, MADER K, et al. Assessment of net charge and protein-protein interactions of different monoclonal antibodies[J]. J Pharm Sci, 2011,100(7):2551-2562.
[19] SHI S, UCHIDA M, CHEUNG J, et al. Method qualification and application of diffusion interaction parameter and virial coefficient[J]. Int J Biol Macromol, 2013,62:487-493.
[20] HE F, WOODS C E, BECKER G W, et al. High-throughput assessment of thermal and colloidal stability parameters for monoclonal antibody formulations[J]. J Pharm Sci, 2011,100(12):5126-5141.
[21] PAUL M, VIEILLARD V, DA SILVA LEMOS R, et al. Long-term physico-chemical stability of diluted trastuzumab[J]. Int J Pharm,2013,448(1):101-104.
[22] PAUL M, VIEILLARD V, JACCOULET E, et al. Long-term stability of diluted solutions of the monoclonal antibody rituximab[J]. Int J Pharm, 2012,436(1-2):282-290.
[23] PAUL M, VIEILLARD V, ROUMI E, et al. Long-term stability of bevacizumab repackaged in 1mL polypropylene syringes for intravitreal administration[J]. Ann Pharm Fr, 2012,70(3):139-154.
[24] QI W, ZENG Y, ORGEL S, et al. Preformulation study of highly purified inactivated polio vaccine, serotype 3[J]. J Pharm Sci, 2014,103(1):140-151.
[25] OYAMA H, KOGA H, TADOKORO T, et al. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody[J]. J Pharm Sci, 2020,109(1):308-315.

基金

国家科技重大专项重大新药创制项目资助(2018ZX09101001-003);2020年国家药品标准提高项目课题资助(2020S11)
PDF(2596 KB)

Accesses

Citation

Detail

段落导航
相关文章

/