Molecular Mechanisms of Mitochondrial Dynamics and Mitophagy and Their Roles in Neurodegenerative Diseases
LIU Hui, ZHANG Zi-hong, BAO Xiu-qi*, ZHANG Dan*
State Key Laboratory of Natural Products and Functions, Institute of Materia Medica,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract:Mitochondria are high dynamic organelles in living cells that maintain cellular metabolic processes and therefore mitochondrial quality control, which play an important role in the maintenance of intracellular homeostasis, is crucial for cell survival. It was reported that mitochondrial dynamics and mitophagy are two main mechanisms in the regulation of mitochondrial quality control. In the central nervous system, maintenance of mitochondrial function and morphology requires fission and fusion of these dynamic organelles. Mitophagy, a selective form of autophagy, which removes abnormal and dysfunctional mitochondria, plays an indispensable role in regulating mitochondrial homeostasis in neurons. Once these systems are disrupted, dysfunctional mitochondria accumulate and potentiate neuronal death, which is associated with reduced levels of ATP and excessive production of reactive oxygen species (ROS). In recent years, there has been increasing evidence suggesting that mitochondrial dynamics imbalance and mitophagy disorders are involved in the pathophysiology of neurodegenerative diseases. In this review, the most recent progress on the molecular mechanisms of mitochondrial dynamics and mitophagy was discussed their roles on the pathological process of neurodegenerative diseases was focused. Elucidation of the regulation of mitochondrial dynamics and mitophagy may become new targets for the treatment of neurodegenerative diseases.
刘慧, 张自弘, 鲍秀琦, 张丹. 线粒体动力学和线粒体自噬的分子机制及其在神经退行性疾病中的作用[J]. 中国药学杂志, 2020, 55(5): 337-341.
LIU Hui, ZHANG Zi-hong, BAO Xiu-qi, ZHANG Dan. Molecular Mechanisms of Mitochondrial Dynamics and Mitophagy and Their Roles in Neurodegenerative Diseases. Chinese Pharmaceutical Journal, 2020, 55(5): 337-341.
IKEDA Y, SHIRAKABE A, BRADY C, et al. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system[J]. J Mol Cell Cardiol, 2015, 78:116-122.
[2]
MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4):728-741.
[3]
KUWANO K, ARAYA J, HARA H, et al. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) [J]. Respir Investig, 2016, 54(6):397-406.
[4]
PICKLES S, VIGIE P, YOULE R J. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4):170-185.
[5]
MIZUMURA K, CLOONAN S M, NAKAHIRA K, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD[J]. J Clin Invest, 2014, 124(9):3987-4003.
[6]
HARA H, KUWANO K, ARAYA J. Mitochondrial quality control in COPD and IPF[J]. Cells, 2018, 7(8):86.
[7]
MEARS J A, LACKNER L L, FANG S, et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission[J]. Nat Struct Mol Biol, 2011, 18(1):20-26.
[8]
WILSON T J, SLUPE A M, STRACK S. Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease[J]. Neurobiol Dis, 2013, 51:13-26.
[9]
SONG Z, GHOCHANI M, MCCAFFERY J M, et al. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion[J]. Mol Biol Cell, 2009, 20(15):3525-3532.
[10]
CIPOLAT S, MARTINS DE BRITO O, DAL ZILIO B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion[J]. Proc Natl Acad Sci USA, 2004, 101(45):15927-15932.
[11]
CHEN H, CHAN D C. Emerging functions of mammalian mitochondrial fusion and fission[J]. Hum Mol Genet, 2005, 14(2):283-289.
[12]
LEE H, SMITH S B, YOON Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure[J]. J Biol Chem, 2017, 292(17):7115-7130.
[13]
PALIKARAS K, DASKALAKI I, MARKAKI M, et al. Mitophagy and age-related pathologies: development of new therapeutics by targeting mitochondrial turnover[J]. Pharmacol Ther, 2017, 178:157-174.
[14]
HARPER J W, ORDUREAU A, HEO J M. Building and decoding ubiquitin chains for mitophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(2):93-108.
[15]
SEKINE S, YOULE R J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol[J]. BMC Biol, 2018, 16(1):2.
[16]
AGUIRRE J D, DUNKERLEY K M, MERCIER P, et al. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation[J]. Proc Natl Acad Sci USA, 2017, 114(2):298-303.
[17]
ORDUREAU A, SARRAF S A, DUDA D M, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis[J]. Mol Cell, 2014, 56(3):360-375.
[18]
GATICA D, LAHIRI V, KLIONSKY D J. Cargo recognition and degradation by selective autophagy[J]. Nat Cell Biol, 2018, 20(3):233-242.
[19]
ZHANG H, BOSCH-MARCE M, SHIMODA L A, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283(16):10892-10903.
[20]
ZHU Y, MASSEN S, TERENZIO M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis[J]. J Biol Chem, 2013, 288(2):1099-1113.
[21]
LIU L, FENG D, CHEN G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2):177-185.
[22]
CHEN G, HAN Z, FENG D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3):362-377.
[23]
WU W, TIAN W, HU Z, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy[J]. EMBO Rep, 2014, 15(5):566-575.
[24]
CHEN M, CHEN Z, WANG Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy[J]. Autophagy, 2016, 12(4):689-702.
[25]
WANG X, WANG W, LI L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer′s disease[J]. Biochim Biophys Acta, 2014, 1842(8):1240-1247.
[26]
CAI Q, TAMMINENI P. Alterations in mitochondrial quality control in Alzheimer′s disease[J]. Front Cell Neurosci, 2016, 10:24.
[27]
WANG X, SU B, LEE H G, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer′s disease[J]. J Neurosci, 2009, 29(28):9090-9103.
[28]
REDDY P H, YIN X, MANCZAK M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer′s disease[J]. Hum Mol Genet, 2018, 27(14):2502-2516.
[29]
MANCZAK M, KANDIMALLA R, YIN X, et al. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer′s disease[J]. Hum Mol Genet, 2018, 27(8):1332-1342.
[30]
REDDY P H, MANCZAK M, YIN X. Mitochondria-division inhibitor 1 protects against amyloid-beta induced mitochondrial fragmentation and synaptic damage in Alzheimer′s disease[J]. J Alzheimers Dis, 2017, 58(1):147-162.
[31]
MANCZAK M, KANDIMALLA R, FRY D, et al. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer′s disease[J]. Hum Mol Genet, 2016, 25(23):5148-5166.
[32]
HU Y, LI X C, WANG Z H, et al. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin[J]. Oncotarget, 2016, 7(14):17356-17368.
[33]
TIAN J, SUN R X, WANG P, et al. Advances in the pathogenesis of Alzheimer′s disease [J]. Shandong Med J(山东医药), 2018,58(27):97-100.
[34]
CACCAMO A, MAJUMDER S, RICHARDSON A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments[J]. J Biol Chem, 2010, 285(17):13107-13120.
[35]
WU H X, LIU Y L. Progress of studies on antiparkison drugs[J]. Chin Pharm J(中国药学杂志), 2004, 39(6):409-412.
[36]
ZILOCCHI M, FINZI G, LUALDI M, et al. Mitochondrial alterations in Parkinson′s disease human samples and cellular models[J]. Neurochem Int, 2018, 118:61-72.
[37]
PERIER C, VILA M. Mitochondrial biology and Parkinson′s disease[J]. Cold Spring Harb Perspect Med, 2012, 2(2):a009332.
[38]
RAPPOLD P M, CUI M, GRIMA J C, et al. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo[J]. Nat Commun, 2014, 5:5244.
[39]
CHEN H, CHAN D C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases[J]. Hum Mol Genet, 2009, 18(R2):169-176.
[40]
KOENTJORO B, PARK J S, SUE C M. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson′s disease[J]. Sci Rep, 2017, 7:44373.
[41]
WU B Y, LIU X G, CHEN W C. Effects of rapamycin induced cellular autophagy in aging-related diseases [J]. Chin Pharmacol Bull(中国药理学通报), 2015, 31(1):11-14.
[42]
KIM J, MOODY J P, EDGERLY C K, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington′s disease[J]. Hum Mol Genet, 2010, 19(20):3919-3935.
[43]
REDDY P H. Increased mitochondrial fission and neuronal dysfunction in Huntington′s disease: implications for molecular inhibitors of excessive mitochondrial fission[J]. Drug Discov Today, 2014, 19(7):951-955.
[44]
GUO X, DISATNIK M H, MONBUREAU M, et al. Inhibition of mitochondrial fragmentation diminishes Huntington′s disease-associated neurodegeneration[J]. J Clin Invest, 2013, 123(12):5371-5388.
[45]
KHALIL B, EL FISSI N, AOUANE A, et al. PINK1-induced mitophagy promotes neuroprotection in Huntington′s disease[J]. Cell Death Dis, 2015, 6:e1617.
[46]
TAN W, PASINELLI P, TROTTI D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis[J]. Biochim Biophys Acta, 2014, 1842(8):1295-1301.
[47]
MUYDERMAN H, CHEN T. Mitochondrial dysfunction in amyotrophic lateral sclerosis - a valid pharmacological target? [J]. Br J Pharmacol, 2014, 171(8):2191-2205.
[48]
LUO G, YI J, MA C, et al. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model[J]. PLoS One, 2013, 8(12):e82112.
[49]
SONG W, SONG Y, KINCAID B, et al. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha[J]. Neurobiol Dis, 2013, 51:72-81.
[50]
MARTINEZ-VICENTE M. Neuronal mitophagy in neurodegenerative diseases[J]. Front Mol Neurosci, 2017, 10:64.
[51]
LIU F, QU J B, LI H, et al. Study on anti-inflammatory mechanisms of resveratrol[J]. Chin Pharm J(中国药学杂志), 2006,41(15):1138-1141.
[52]
SARKAR S, DAVIES J E, HUANG Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein[J]. J Biol Chem, 2007, 282(8):5641-5652.
[53]
KAMAT P K, KALANI A, KYLES P, et al. Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease[J]. Cell Biochem Biophys, 2014, 70(2):707-719.
[54]
CHU C T. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases[J]. Neurobiol Dis, 2019, 122:23-34.