摘要
目的 制备西罗莫司(sirolimus,雷幅霉素,rapamycin,RAPA)自微乳化释药系统(RAPA-SMEDDS)以提高低水溶性药物-RAPA的生物利用度。 方法 用HPLC-UV测定RAPA含量;通过溶解度实验和伪三元相图筛选SMEDDS 组分;采用星点设计和效应面法优化处方以获得自乳化后粒径小于50 nm的自微乳化制剂;考察并比较优化处方与市售口服液在大鼠体内的药动学行为。结果 优化后RAPA-SMEDDS的处方为30%MCT、50%Cremopher EL和20% Labrasol,每1 g SMEDDS中载药2.0 mg;自乳化后形成乳滴的粒径和PDI分别为41.10 nm和0.247;不同稀释介质及不同稀释倍数对微乳粒径大小及其分布影响较小;单剂量灌胃给药后大鼠体内SMEDDS和Rapamune口服液的主要药动学参数:ρmax分别为(13.37±2.78)和(4.15±1.48)μg·L-1,tmax分别为(2.60±1.29)和(5.40±1.34)h,AUC0-48 h分别为(157.75±70.77)和(73.36±34.12)μg·h·L-1。结论 优化所得处方自乳化后粒径小于50 nm,大鼠体内相对生物利用度为215.04%,RAPA-SMEDDS可明显提高药物的口服吸收。
Abstract
OBJECTIVE To prepare self-microemulsifying drug delivery system(SMEDDS) for enhancing the oral bioavailability of the poorly water soluble drug, sirolimus (RAPA). METHODS The compositions of RAPA-SMEDDS were selected by solubility assay and pseudo-ternary phase diagrams analysis. The SMEDDS formulation was optimized using central composite design/response surface methodology. The concentrations of RAPA in vitro were determined by HPLC-UV and the whole blood concentrations of RAPA were determined by HPLC-MS/MS. The pharmacokinetic behaviors of RAPA-SMEDDS in rats were evaluated comparing with Rapamune. RESULTS Optimized formulaion of SMEDDS for bioavailability assessment were 30% MCT, 50% Cremopher EL and 20% Labrasol. 1.0 g mixture contained 2.0 mg of RAPA. SMEDDS formulation formed microemulsion in water. The average particle diameter of microemulsion was less than 50 nm. The relative bioavailability of RAPA-SMEDDS to the conventional oral solution (Rapamune, rapamycin 1 g·L-1) was 215.04%. CONCLUSION The HPLC method has been proved to be selective, sensitive, rapid and suitable for the determination of rapamycin in vitro. The bioavailability of RAPA-SMEDDS were significantly higher than Rapamune. These results supported new opportunities to deliver rapamycin using SMEDDS by oral route.
关键词
西罗莫司 /
自微乳化释药系统 /
微乳 /
生物利用度
{{custom_keyword}} /
Key words
sirolimus /
self-microemulsifying drug delivery system /
microemulsion /
bioavailability
{{custom_keyword}} /
孙明辉 翟雪珍 斯陆勤 李高 杨祥良.
西罗莫司自微乳化释药系统的制备及体内外评价[J]. 中国药学杂志, 2010, 45(3): 193-198
SUN Ming-hui;ZHI Xue-zhen;SI Lu-qin;LI Go;YNG Xing-ling.
Formulation Design and Evaluation of Self-Microemulsifying Drug Delivery System of Sirolimus[J]. Chinese Pharmaceutical Journal, 2010, 45(3): 193-198
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MURGIA M G, JORDAN S, KAHAN B D. The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients[J]. Kidney In, 1996, 49(1):209-216.
[2] KAHAN B D, CHANG J Y, SEHGAL S N. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin[J]. Transplantation, 1991, 52(2):185-191.
[3] VIGNOT S, FAIVRE S, AGUIRRE D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives[J]. Ann Oncol, 2005, 16(4):525-537.
[4] KAHAN B D. Update on pharmacokinetic/pharmacodynamic studies with FTY720 and sirolimus[J]. Ther Drug Monit, 2002, 24(1): 47-52.
[5] GURSOY R N, BENITA S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs[J]. Biomed Pharmacother, 2004, 58(3): 173-182.
[6] SUN M H, SI L Q, ZHAI X Z, et al. Determination of rapamycin in rat whole blood by HPLC-MS/MS[J]. Chin Pharm J(中国药学杂志),2010,45(2):132-135.
[7] HUGHERS P, MUSSER J, CONKLIN M. The isolation, synthesis and characterization of an isomeric form rapamycin[J]. Tetrahedron Lett, 1992, 33 (33): 4739-4742.
[8] YAO J L, WANG H J, XU Y, et al. Determination of rapamicin oral solution and its stability[J]. Clin J Pharm(中国医药工业杂志),2006, 37(11): 765-767.
[9] CHEN Y C, XIONG S B, XING H Y, et al. In vitro release of rapamycin sustained eluting stent detected by a new designed circulating device[J]. Chin Pharm J(中国药学杂志), 2008, 43(5): 688-692.
[10] PORTER C J H, POUTON C W, CUINE J F, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems[J]. Adv Drug Deliv Rev, 2008, 60(6): 673-691.
[11] WACHER V J, WU C Y, BENET L Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy[J]. Mol Carcinog, 1995, 13(3): 129-134.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}