目的 综述当前基于系统生物学的多靶点、多组分药物研究的一些方向和进展。方法 文献检索方法。结果 当前药物发现的原则主要遵循“一药,一靶,一病”的理念,即设计能与疾病相关的某一关键靶标特异结合的化学实体。尽管过去几十年中大多数选择性药物都是通过这种方法获得的,但是许多药物却很难达到预期临床效果,或产生严重的毒副作用。近年来,系统生物学的研究揭示了分子网络调控与疾病之间高度的关联性,并显示了在系统层面发现靶向疾病相关网络的多靶点、多组分药物的可能性。本文通过相关文献,分析了选择性药物设计的缺陷,并综述了基于系统生物学的多靶点、多组分药物研究的一些方向和进展。结论 将药物研究与系统生物学结合,在各种调控网络的背景中研究多个靶点之间的作用与联系,有可能系统地预测和解释药物的作用,发现影响药物有效性和安全性的因素,从而产生新的治疗复杂疾病的策略,并开发出新的多靶点及多组分药物。
关键词
选择性药物 /
多靶点药物 /
多组分药物 /
分子网络 /
系统生物学
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ADAMS C P, BRANTNER V V. Estimating the cost of new drug development: Is it really 802 million dollars? [J]. Health Aff (Millwood) , 2006, 25(2):420-428.
[2] KAUFMANN S H E. Paul Ehrlich: founder of chemotherapy [J]. Nat Rev Drug Discov , 2008, 7(5):373.
[3] KOLA I, LANDIS J. Can the pharmaceutical industry reduce attrition rates? [J]. Nat Rev Drug Discov , 2004, 3(8):711-716.
[4] WISHART D S, KNOX C, GUO A C, et al. Drug-bank: a comprehensive resource for in silico drug discovery and exploration [J]. Nucl Acid Res , 2006, 34(Database Issue):668-672.
[5] MAMDANI M, ROCHON P A, JUURLINK D N, et al. Observational study of upper gastrointestinal haemorrhage in elderly patients given selective cyclooxygenase 2 inhibitors or conventional nonsteroidal antiinflammatory drugs [J]. Br Med J , 2002, 325:624.
[6] STAFFA J A, CHANG J, GREEN L. Cerivastatin and reports of fatal rhabdomyolysis [J]. N Engl J Med , 2002, 346(7):539-540.
[7] MILLAN M J. Multi-target strategies for the improved treatment of depressive states:Conceptual foundations and neuronal substrates, drug discovery and therapeutic application [J]. Pharmacol Ther, 2006, 110(2):135-370.
[8] LIU M, LIBERZON A, KONG S W, et al. Network-based analysis of affected biological processes in type 2 diabetes models [J]. PLoS Genet, 2007, 3(6):e96.
[9] WHEELER-JONES C P D. Cell signaling in the cardiovascular system: an overview[J]. Heart, 2005, 91(10): 1366-1374.
[10] ENGELMAN J A, SETTLEMAN J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy [J]. Curr Opin Genet Dev, 2008, 18(1):73-79.
[11] WONG D, WANG M, CHENG Y, et al. Cardiovascular hazard and non-steroidal anti-inflammatory drugs [J]. Curr Opin Pharmacol, 2005, 5(2):204-210.
[12] LIPTON S A. Turning down, but not off. Neuroprotection requires a paradigm shift in drug development. [J]. Nature, 2004, 428: 473.
[13] APIC G, IGNJATOVIC T, BOYER S, et al. Illuminating drug discovery with biological pathways [J]. FEBS Lett, 2005, 579(8):1872-1877.
[14] CSERMELY P, AGOSTON V, PONGOR S. The efficiency of multi-target drugs: the network approach might help drug design [J]. TRENDS Pharmacol Sci, 2005, 26(4):178-182.
[15] ARAUJO R P, PETRICOIN E F, LIOTTA L A. A mathematical model of combination therapy using the EGFR signaling network [J]. Biosystems, 2005, 80(1):57-69.
[16] CHOU T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies [J]. Pharmacol Rev, 2006, 58(3):621-681.
[17] LOEWE S, MUISCHNEK H. Effect of combinations: mathematical basis of the problem [J]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, 1926, 114(5):313-326.
[18] KEITH C T, BORISY A A, STOCKWELL B R. Multicomponent therapeutics for networked systems [J]. Nat Rev Drug Discov, 2005, 4(1):1-8.
[19] BORISY A A, ELLIOTT P J, HURST N W, et al. Systematic discovery of multicomponent therapeutics [J]. Proc Natl Acad Sci USA, 2003, 100(13):7977-7982.
[20] BLISS C I. The toxicity of poisons applied jointly [J]. Ann Appl Biol, 1939, 26(13):585-615.
[21] WONG P K, YU F, SHAHANGIAN A, et al. Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm [J]. Proc Natl Acad Sci USA, 2008, 105(13):5105-5110.
[22] CALZOLARI D, BRUSCHI S, COQUIN L, et al. Search algorithms as a framework for the optimization of drug combinations [J]. PLoS Comput Biol, 2008, 4(12):e1000249.
[23] ZINNER R G, BARRETT B L, POPOVA E, et al. Algorithmic guided screening of drug combinations of arbitrary size for activity against cancer cells [J]. Mol Cancer Ther, 2009, 8(3):521-532.
[24] WANG Y, YU L, ZHANG L, et al. A novel methodology for multicomponent drug design and its application in optimizing the combination of active components from Chinese medicinal formula shenmai [J]. Chem Biol Drug Des, 2010, 75(3): 318-324.
[25] KITANO H. Biological robustness [J]. Nat Rev Genet, 2004, 5(11):826-837.
[26] ZHAO J, YU H, LUO J, et al. Hierarchical modularity of nested bow-ties in metabolic networks [J]. BMC Bioinformatics, 2006, 7:386.
[27] ZHAO J, TAO L, YU H, et al. Bow-tie topological features of metabolic networks and the functional significance [J]. Chin Sci Bull, 2007, 52(8):1036-1045.
[28] JEONG H, MASON S P, BARABASI A L, et al. Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833):41-42.
[29] ZHAO J, GENG C, TAO L, et al. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data [J]. J Proteome Res, 2010, 9 (4):1648-1658.
[30] HWANG S, SON S W, KIM S C, et al. A protein interaction network associated with asthma [J]. J Theor Biol, 2008, 252(4):722-731.
[31] RAHMAN S A, SCHOMBURG D. Observing local and global properties of metabolic pathways: "load points" and "choke points" in the metabolic networks [J]. Bioinformatics, 2006, 22(14): 1767-1774.
[32] HWANG W, ZHANG A, RAMANATHAN M. Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery[J]. Clin Pharmacol Ther, 2008, 84(5):563-572.
[33] DEZSO Z, NIKOLSKY Y, NIKOLSKAYA T, et al. Identifying disease-specific genes based on their topological significance in protein networks [J]. BMC Systems Biol, 2009, 3:36.
[34] HOPKINS A L. Network pharmacology: the next paradigm in drug discovery [J]. Nat Chem Biol, 2008, 4(11):682-690.
[35] WU Z, LUONAN C: A Network-based Approach for Identifying Effective Drug Combination[C]. The Third International Symposium on Optimization and Systems Biology (OSB 09): 2009; Zhangjiajie, China; 2009: 207-213.
[36] RUTHS D A, NAKHLEH L, IYENGAR M S, et al. Hypothesis generation in signaling networks [J]. J Comput Biol, 2006, 13(9):1546-1557.
[37] DASIKA M S, BURGARD A, MARANAS C D. A computational framework for the topological analysis and targeted disruption of signal transduction networks [J]. Biophys J, 2006, 91(1):382-398.
[38] SRIDHAR P, SONG B, KAHVECIY T, et al. Mining metabolic networks for optimal drug targets [J]. Pac Symp Biocomput, 2008, 13(1):291-302.
[39] KARLEBACH G, SHAMIR R. Minimally perturbing a gene regulatory network to avoid a disease phenotype: the glioma network as a test case [J]. BMC Systems Biology, 2010, 4(1):15.
[40] YANG K, BAI H, OUYANG Q, et al. Finding multiple target optimal intervention in disease-related molecular network [J]. Mol Syst Biol, 2008, 4:228.
[41] LE NOVERE N, BORNSTEIN B, BROICHER A, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems [J]. Nucl Acid Res, 2006, 34(Database Issue):D689-691.
[42] SCHULZ M, BAKKER B, KLIPP E. TIde: a software for the systematic scanning of drug targets in kinetic network models [J]. BMC Bioinformatics, 2009, 10:344.
[43] OKA H, YAMAMOTO S, KUROKI T, et al. Prospective study of chemoprevention of hepatocellular carcinoma with Sho-saiko-to (TJ-9). [J]. Cancer, 1995, 76(5):743-749.
[44] HUANG S, GUO A, XIANG Y, et al. Clinical study on the treatment of acute promyelocytic leukemia with composite indigo naturalis tablets [J]. Chin J Hematol(中华血液学杂志), 1995, 16(1):26-28.
[45] MAZZA M, CAPUANO A, BRIA P, et al. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer′s dementia in a randomized placebo-controlled double-blind study [J]. Eur J Neurol, 2006, 13(9):981-985.
[46] SMALL E, FROHLICH M, BOK R, et al. Prospective trial of the herbal supplement PC-SPES in patients with progressive prostate cancer [J]. J Clin Oncol, 2000 18(21):3595-3603.
[47] BONHAM M, ARNOLD H, MONTGOMERY B, et al. Molecular effects of the herbal compound PC-SPES: identification of activity pathways in prostate carcinoma [J]. Cancer Res, 2002, 62(14):3920-3924.
[48] ZHAO J, JIANG P, ZHANG W. Molecular networks for the study of TCM pharmacology [J]. Briefings in Bioinformatics, 2009, doi:10. 1093/bib/bbp063.
[49] JIANG P, LIU R, DOU S, et al. Analysis of the constituents in the rat plasma after oral administration of Shexiang Baoxin Pill by HPLC-ESI-MS/MS [J]. Biomed Chromatogr, 2009,23(12):1333-1343.
[50] YUE Q X, CAO Z W, GUAN S H, et al. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network [J]. Mol Cell Proteomics, 2008, 7(5):949-961.
[51] DUNKEL M, GUNTHER S, AHMED J, et al. SuperPred: drug classification and target prediction [J]. Nucleic Acids Res, 2008, 36 (Web Server issue): W55-W59.
[52] CHEN Y Z, ZHI D G. Ligand protein inverse docking and its potential use in the computer search of protein targets of a small molecule [J]. Proteins, 2001, 43(2):217-226.
[53] WANG L, ZHOU G B, LIU P, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia [J]. Proc Natl Acad Sci USA, 2008, 105(12):4826-4831.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}