硅基介孔材料在药物缓控释中的应用

曹渊;白英豪;夏之宁;徐彦芹

中国药学杂志 ›› 2009, Vol. 44 ›› Issue (07) : 481-484.

中国药学杂志 ›› 2009, Vol. 44 ›› Issue (07) : 481-484.
综述

硅基介孔材料在药物缓控释中的应用

  • 曹渊a,b;白英豪a;夏之宁a,b;徐彦芹a
作者信息 +
文章历史 +

摘要

目的综述硅基介孔材料在药物缓控释中的应用,为其深入研究提供参考。方法查阅国内外相关文献并进行归纳整理。结果各种硅基介孔材料均能用作药物载体,影响其载药释药性能的主要因素有孔径、形貌、表面修饰等,与其他智能材料复合是实现药物控制释放的重要途径。结论硅基介孔材料在药物缓控释中具有很大的应用前景,目前的研究还主要是从材料学的角度,药剂学、药动学方面的研究应当加强。

关键词

硅基介孔材料 / 载药 / 缓释 / 控释 / 应用

引用本文

导出引用
曹渊;白英豪;夏之宁;徐彦芹. 硅基介孔材料在药物缓控释中的应用[J]. 中国药学杂志, 2009, 44(07): 481-484

参考文献

[1] YOUNGKOON K,PAUL DALHAIMER,DAVID A C,et al. Polymeric worm micelles as nano-carriers for drug delivery[J]. Nanotechnology,2005,16(7):484-491. [2] PRABAHARAN M,GONG S Q. Novel thiolated carboxymethyl chitosan-g-b-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers[J]. Carbohydr Polym,2008,73(1):117-125. [3] KRESGE C T,LEONOWICZ M E,ROTH W J,et al. Ordered mesoporous molecular sieves synthesized by a liquid- crystal template mechanism[J]. Nature,1992,359:710-712. [4] BECK J S,VARTULI J C,ROTH W J,et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J Am Chem Soc,1992,114(27):10834-10843. [5] ZHAO D Y,HUO Q H,FENG J L,et a1. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable,mesoporous silica structures[J]. J Am Chem Soc,1998,120(24):6024-6036. [6] SANG H J,RYOO R,KRUK M,et a1. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates[J]. J Phys Chem B,2002,106 (18) :4640-4646. [7] BOISSIèRE C,LARBOT A,LEE A V D,et a1. A new synthesis of mesoporous msu-x silica controlled by a two-step pathway[J]. Chem Mater,2000,12(10):2902-2913. [8] WALLER P,SHAN S P,MARCHESE L M,et a1. Zeolite nanocrystals inside mesoporous TUD-1:A high-performance catalytic composite[J]. Chem Eur J,2004,10(20):4970-4976. [9] GAO X H,MAO X W. Synthesis and characterization of MCM-41 molecular sieves using thermal formation method[J]. J Mol Catal (分子催化),1997,l1(5):379-382. [10] WU C G,THOMAS B. Microwave synthesis of molecular sieves MCM-41[J]. J Chem Soc Chem Commun,1996,117(8):925-926. [11] FENG F X,ZHONG B. Synthesizing mesoporous molecular sieves MCM-41 via dry power approach[J]. Acta Pet Sin(石油学报),1998,14(3):89-92. [12] LIN W Y,CHEN J S,SUN Y,et a1. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant containing silicate gel[J]. J Chem Soc Chem Commun,1995,23:2367-2368. [13] GALLIS K W,LABDRY C C. Synthesis of MCM-48 by phase transformation processes[J]. Chem Mater,1997,9(10):2035-2038. [14] FYFE C A,FU G Y. Structure organization of silicate polyanions with surfactants:a new approach to the syntheses,structure transformations,and formation mechanisms of mesostructural materials[J]. J Am Chem Soc,1995,117(38):9709-9714. [15] LIU Y,KARKAMKAR A,THOMAS J,et al. Redirecting the assembly of hexagonal MCM-41 into cubic MCM-48 from sodium silicate without the use of an organic structure modifier[J]. Chem Commun,2001,18(1-2):1822-1823. [16] DOYLE A,HODNETT B K. Stability of MCM-48 in aqueous solution as a function of pH[J]. Micropor Mesopor Mater,2003,63(1-3):53-57. [17] WEI H M,HE N Y. Synthesis of MCM-41 mesoporous molecular sieves under strong acidic conditions at room temperature[J].J Xiangtan Univ(Nat Sci)(湘潭大学自然科学学报),2000,22(3):49-53. [18] GAO X H,MAO X W. Effect of crystallization condition on the pore wall thickness and performance of MCM-41 molecular sieves[J].Acta Pet Sin(石油学报),1998,14(3):17-20. [19] GAO X H,SHEN S K. Effect of crystallization temperature on structure and performance of MCM-41[J].J Mol Catal (分子催化),1999,13(2):127-l31. [20] DOU T,FENG F X. Study on synthesis factors of silica-based mesoporous molecular sieve MCM-41[J].J Fuel Chem Technol(燃料化学学报),1998,26(3):243-247. [21] XUE P,LU G Z,GUO Y L,et a1. A novel support of MCM-48 molecular sieve for immobilization of penicillin g acylase[J]. J Mol Catal B:Enzymatic,2004,30(2):75-81. [22] INAGAKI S,FUKUSHIMA Y,KURODA K. Synthesis of highly ordered mesoporous materials from a layered polysilicate[J]. Chem Commun,1993:680-682. [23] LEE J S,JOO S H,RYONG R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters[J]. J Am Chem Soc,2002,124(7):1156-1157. [24] GAO X H,WANG Z F. The effect of template removal on structure and performance of MCM-41 molecular sieve[J].Pet Proce Petrochem(石油炼制与化工),1997,28(11):37-40. [25] MATTHEW T,KEENE J,RENAUD D,et al. Ozone treatment of the removal of surfactant to from MCM-41 type materials[J]. J Chem Soc Chem Commun,1998,6(20):2203-2204. [26] VALLET-REGI M,RáMILA A,DEL REAL R P,et al. A new property of MCM-41:Drug delivery system[J]. Chem Mater,2001,13 (2):308-311. [27] CHARNAY C,BE′GU S,TOURNE′-PE′TEILH C,et al. Inclusion of ibuprofen in mesoporous templated silica:drug loading and release property[J]. Eur J Pharm Biopharm,2004,57 (3):533-540. [28] HORCAJADA P,RAMILA A,PEREZ-PARIENTE J,et al. Influence of pore size MCM-41 matrices on drug delivery rate[J]. Micropor Mecropor Mater,2004,68(1-3):105-109. [29] NUNES C D,PEDRO D V,FERNANDES A C,et a1. Loading and delivery of sertraline using inorganic micro and mesoporous materials[J]. Eur J Pharm Biopharm,2007,66(3):357-365. [30] AMBROGI V,PERIOLI L,.MARMOTTINI F,et al. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate[J]. Eur J Pharm Sci,2007,32 (3 ):216-222. [31] IZQUIERDO-BARBA I,A′FRICA M,DOADRIO ANTONIO L,et al. Release evaluation of drugs from ordered three-dimensional silica structures[J]. Eur J Pharm Sci,2005,26 :365-373. [32] VALLET-REGI M,DOADRIO J C,DEADRIO A I,et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin[J]. Solid State Ionics,2004,172(1-4):435-439. [33] DOADRIO A L,SOUSA E M B,DOADRIO J C,et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery[J]. J Controlled Release,2004,97(1):125-132. [34] HEIKKIL? T,SALONEN J,TUURA J,et al. Mesoporous silica material TUD-1 as a drug delivery system[J]. Int J Pharm,2007,331(1):133-138. [35] ZHU Y F,SHI J L,LI Y S,et al. Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics[J]. J Mater Res,2005,20(1):54-61. [36] ZHU Y F,SHI J L,CHEN H R,et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property[J]. Micropor Mesopor Mater,2005,84:218-222. [37] LI Z Z,WEN X,SHAO L,et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. J Controlled Release,2004,98 (2):245-254. [38] LI X,ZHANG L X,DONG X P,et al. Preparation of mesoporous calcium doped silica spheres with narrow sized is persion and their drug loading and degradation behavior[J]. Micropor Mesopor Mater,2007,102 (1-3):151-158. [39] ZENG W,QIAN X F,YIN J,et al. The drug delivery system of MCM-41 materials via co-condensation synthesis[J]. Mater Chem Phys,2006,97(2-3):437-441. [40] TANG Q L,XU Y,WU D,et al. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery[J]. J Controlled Release,2006,114:41-46. [41] TANG Q L,XU Y,WU D,et al. A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine[J]. J Solid State Chem,2006,179(5):1513-1520. [42] QU F Y,ZHU G S,HUANG S Y,et a1. Effective controlled release of captopril by silylation of mesoporous MCM-41[J]. Chem Phys Chem,2006,7(12):400-406. [43] MANZANO M,AINA V,ARE′AN C O,et al. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization[J]. Chem Eng J,2008,37(1):30-37. [44] FAGUNDES L B,SOUSA T G F,SOUSA A. SBA-15-collagen hybrid material for drug delivery applications[J]. J Non-Cryst Solids,2006,352 ( 32-35):3496-3501. [45] PATRICIA H,AINHOA R,GéRARD F,et al. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate[J]. Solid State Sci,2006,8(10):1243-1249. [46] MAL N K,FUJIWARA N,TANAKA Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature,2003,421:350-353. [47] MAL N K,FUJIWARA N,TANAKA Y,et a1. Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41 photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41[J]. Chem Mater,2003,15:3385-3394. [48] ZHU Y F,SHI J L,SHEN W H,et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayers core-shell structure[J]. Angew Chem,2005,117(32):5213-5217. [49] ZHU Y F,SHI J L. A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J]. Micropor Mesopor Mater,2007,103 (1-2):243-249. [50] ZHAO W R,GU J L,ZHANG L X,et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core-mesoporous silica shell structure-support[J]. J Am Chem Soc,2005,127(26):8916-8917. [51] ZHU S M,ZHOU Z Y,ZHANG D,et al. Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch[J]. Micropor Mesopor Mater,2007,106(1-3):56-61. [52] YANG P P,QUAN Z W,LU L L,et al. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems[J]. Biomaterials,2008,29(6):692-702. [53] GOMEZ-VEGA J M,HOZUMI A,SAIZ E,et al. Bioactive glass-mesoporous silica coatings on Ti6Al4V through enameling and triblock-copolymer-templated sol-gel processing [J]. J Biomed Mater Res,2001,56 (3):382-389. [54] GOMEZ-VEGA J M,HOZUMI A,SUGIMURA H,et al. Ordered mesoporous silica coatings that induce apatite formation in vitro[J]. Adv Mater,2001,13(11):822-825. [55] IZQUIERDO-BARBA I,RUIZ-GONZALEZ L,DOADRIO J C,et al. Tissue regeneration:A new property of mesoporous materials [J]. Solid State Sci,2005,7(8):983-989. [56] VALLET-REGI M,IZQUIERDO-BARBA I,RAMILA A,et al. Phosphorous-doped MCM-41 as bioactive materials [J]. Solid State Sci,2005,7(2):233-237. [57] GIRI S,TREWYN B G,STELLMAKERM P,et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angew Chem Int Edit,2005,44 (32):5038-5044.

基金

国家自然科学基金资助项目(207759096);重庆市自然科学基金资助项目(2006BB5177);中国博士后科学基金资助项目(20080440696)

Accesses

Citation

Detail

段落导航
相关文章

/