摘要
目的由于单一载体材料包封药物,易于形成高度结晶的颗粒将药物排出晶格,使传统SLN载药量和包封率较低,为此本实验室运用固、液态复合载体材料制备了包载药物雷公藤内酯醇的新型SLN。方法运用4种包封率测定方法对雷公藤内酯醇在7种载体材料中的包封性能进行考察,结合微观分析手段TEM(透射电子显微镜)和AFM(原子力显微镜)以及激光粒度(LD)和Zeta电位对新型SLN物化性能进行表征。结果发现以液体状态存在的三辛酸甘油酯对药物的包封能力较好,拥有混合载体材料结构Compritol ATO 888对雷公藤内酯醇的包封率亦较高,而运用上述2种复合载体材料制备的雷公藤内酯醇新型SLN更获得高达93%的包封率。TEM和AFM形貌观察,颗粒呈球状,比较规则,平均粒径102 nm,Zeta电位低于-25mV,冰箱长期留样研究表明系统比较稳定。结论最终选择Compritol ATO 888和三辛酸甘油酯作为复合载体材料制备雷公藤内酯醇新型SLN载体系统。
Abstract
OBJECTIVE To prepare novel SLN loaded triptolide using the solid lipid and liquid oil for the purpose of increasing EE%.METHODS Four types of measurement methods of EE% were conducted on traditional and novel SLN loaded triptolide composed of seven matrixes.The measurements of TEM,AFM,particle size and Zeta potential were employed to investigate the physical and chemical properties of novel SLN.RESULTS The higher EE% occurred in the matrix of tricaprylic glyceride and Compritol ATO 888.The EE% of triptolide SLN composed of mixture lipid matrix was as high as 93%,and the shape of nanoparticles was homogeneous round with the mean particle size of 102 nm and the Zeta potential under-25 mV,suggesting a relative stable system obtained.CONCLUSION From the above investigations,the mixture of tricaprylic glyceride and Compritol ATO 888 is employed to prepare the novel SLN loaded triptolide.
关键词
固体脂质纳米粒 /
雷公藤内酯醇 /
包封率 /
复合载体材料
{{custom_keyword}} /
Key words
SLN /
triptolide /
entrapped efficiency(EE%)
{{custom_keyword}} /
侯冬枝;谢长生;平其能;杨祥良;徐辉碧;梁晓晖;李赛.
雷公藤内酯醇新型SLN包封率的测定及载体材料筛选[J]. 中国药学杂志, 2007, 42(12): 919-923
HOU Dong-zhi;XIE Chng-sheng;PING Qi-neng;YNG Xing-ling;XU Hui-i;LING Xio-hui;LI Si.
Measurement of Entrapped Efficiency(EE%) and Screen of Carrier Matrix Materials in Novel SLN Loaded Triptolide [J]. Chinese Pharmaceutical Journal, 2007, 42(12): 919-923
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HOU D Z,XIE C S,HUANG K J,et al. The production and characteristics of solid lipid nanoparticles (SLNs)[J] . Biomaterials,2003,24 (5):1781-1785.
[2] HOU D Z,XIE C S,YANG X L. The influence of drug to lipid ratios on the characteristics of the solid lipid nanoparticle (SLNs) dispersion [J] . J Chin Pharm Univ(中国药科大学学报),2005,1(36):22-27.
[3] HOU D Z,XIE C S,PING Q N. Combined surfactants to produce favorable physical stable solid lipid nanoparticles(SLNs) systems[J] . J Chin Pharm Univ(中国药科大学学报),2005,5(36):417- 423.
[4] HOU D Z,XIE C S.Studies on the characteristics of freeze dried solid lipid nanoparticles loading mifepristone[J] . J Chin Pharm Univ(中国药科大学学报),2004,35(5):413-416.
[5] HOU D Z,XIE C S,ZHU C H. The preparation and development study in carrier structure of solid lipid nanoparticle [J] .Chin Hosp Pharm J(中国医院药学杂志),2004,24(1):43-45.
[6] HOU D Z,XIE C S,YANG X L. Properties of mifepristone solid lipid nanoparticles[J] . Chin J Pharm(中国医药工业杂志),2004,35(10):602-605.
[7] HOU D Z,XIE C S,ZHU C H. The development of solid lipid nanoparticles production and carrier structure investigation [J] . Chin Hosp Pharm(中国医院药学杂志),2004,(1):22-25.
[8] HOU D Z,XIE C S,YANG X L,et al. The investigation of microstructure of novel solid lipid nanoparticle(SLN) loaded triptolide[J] .Acta Pharm Sin (药学学报),2007,42(4):2-6.
[9] SATO K,UENO S,YANO J. Molecular interactions and kinetic properties of fats[J] . Prog In Lipid Res,1999,38 (3):91-116.
[10] JENNING A,THUNEMANN F,GOHLA S H. Chracterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids [J] . Int J Pharm,2000,199 (4):167-177.
[11] BECK P,SCHERER D,KREUTER J. Separation of drug-loaded nanoparticles from free drug by gel filtration[J] .J Microencapsul,1990,7(4):491-496.
[12] MULLER R H,RADTKE M,WISSING S A. Nanostructured lipid matrices for improved microencapsulation of drugs [J] . Int J Pharm,2002,242(5):121-128.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家“十五”科技攻关计划项目(纳米药物新剂型开发与产业化)(2001BA310A07)
{{custom_fund}}