摘要
目的研究丹参脂溶性成分在Caco-2细胞模型中的吸收机制。方法以Caco-2细胞作为吸收研究模型,分别测定了各种条件下,包括分别以单体丹参酮ⅡA和丹参醇提取物给药、改变给药浓度、改变转运方向以及加入影响吸收的物质,丹参酮ⅡA,隐丹参酮和丹参酮Ⅰ的转运情况。结果给予不同剂量的丹参酮ⅡA,其表观通透系数Papp随浓度的增加先降低后升高; 丹参酮ⅡA细胞绒毛侧Apical→基底侧Basolateral转运(AP→BL)大于BL→AP 5倍以上;随着冰片含量增加,丹参脂溶性成分的 Papp明显增大;EDTA对吸收没有明显影响。结论丹参酮ⅡA在Caco-2细胞模型中的转运机制类似载体介导转运兼有被动扩散,无细胞旁路途径,无外排泵参与;冰片有促吸收的作用。本实验结果为含丹参的制剂研究、口服给药等提供信息。
Abstract
OBJECTIVE To study the absorption mechanism of liposoluble components of Salvia miltiorrhiza with Caco-2 cell model . METHODS Caco-2 cell was used an drug absorption model. The transportation of tanshinon ⅡA, cryptotanshinone and tanshinone Ⅰ across Caco-2 cell were determined under various conditions, including giving tanshinone ⅡA and the ethanol extract of Salvia miltiorrhiza respectively, changing dosage and transport direction, adding some appropriate substances affecting absorption.RESULTS With the increasing of tanshinone ⅡA concentration, the apparent permeability coefficient (Papp) decresed at first then increased. The Papp of transport from AP to BL was five times more than that from BL to AP. With increasing dosages of borneol, the Papp increased obviously. Drug transport was not affected by EDTA. CONCLUSION The transport mechanism of tanshinon ⅡA in vivo is rather complex and involves carrier-mediated transport and passive transcellular diffusion, with neither paracellular route nor P-gp efflux. Borneol can promote transport ofliposoluble components across Caco-2 cell.The present study provided useful information for formulation study, oral administration and etc.
关键词
丹参酮 /
脂溶性成分 /
Caco-2细胞模型 /
吸收机制
{{custom_keyword}} /
Key words
Salvia miltiorrhiza Bge. /
liposoluble components /
Caco-2 cell model /
absorption mechanism
{{custom_keyword}} /
李莉;袁媛;蒋学华.
丹参脂溶性成分在Caco-2细胞模型中吸收机制研究[J]. 中国药学杂志, 2006, 41(02): 108-111
LI Li;YUN Yun;JING Xue-hu.
Absorption Mechanism of Liposoluble Components of Salvia miltiorrhiza with Caco-2 Cell Model [J]. Chinese Pharmaceutical Journal, 2006, 41(02): 108-111
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GUO M M, GUO H P. Pharmacology, preparations and clinic progress of Saluia miltorrhiza Bge[J] . Chongqing Med J(重庆医学),1998,27(5):308-310.
[2] WALTER E,KISSEL T. Heteogeneity in the human intertinal cell line Caco-2 leads to differences in transepithelial transport[J] . Eur J Pharm Sci,1995,3:215-230.
[3] VAIDYANATHAN J B,WALLE T. Transport and metabolism of the tea flavonoid (-)-Epicatechin by the human intestinal cell line Caco-2[J] . Pharm Res,2001,18(10):1420-1425.
[4] CHEN J Y,LI Y Q,HU M. P-glycoprotein mediated transepithelial transport of AG337,a novel anti-cancer agent in Caco-2 cell culture model[J] . Chin J Clin Pharm(中国临床药学杂志),2000,9(3):168-171.
[5] YEE S. In vitro permeability across Caco-2 cells (colonic) can predict in man-fact or myth[J] . Pharm Res,1997,14(6):763-766.
[6] WU X C,WHITFIELD L R,STEWART B H. Atorvastatin transport in the Caco-2 cell model:contributions of P-glycoprotein and proton-monocarboxylic acid co-transporter[J] . Pharm Res,2000,17 (2):209-215.
[7] HILGERS A R,CONRADI R A,BURTON P S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa[J] . Pharm Res,1990,7(9):902-910.
[8] NICKLIN P L,IRWIN W J,HASSAN I F,et al. Proline uptake by monolayers of human intestinal absorptive (Caco-2) cells in vitro[J] . Biochim Biophys Acta,1992,1104:283-292.
[9] YUAN Y,JIANG X H, ZHOU J,et al. The absorption mechanism of tashinone IIA in rat small intestine[J] . West China J Pharm(华西药学杂志),2002,17(4):246-248.
[10] LOWHER N,FOX R, FALLER B, et al. In vitro and in situ permeability of a “second generation” hydroxypyridinone oral iron chelator:Correlation with physicochemical propertics and oral activity[J] .Pharm Res,1999:16(3),434-436.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(3007093530271614)
{{custom_fund}}